Suppressive Control of Incentive Salience in Real-World Human Vision

Clayton Hickey, Universita degli Studi di Trento
David Acunzo, University of Birmingham
Jaclyn Dell, University of Birmingham

Commercial Interest:
Suppressive Control of Incentive Salience in Real-World Human Vision

Clayton Hickey, David Acunzo, & Jaclyn Dell

Centre for Human Brain Health and School of Psychology
University of Birmingham, UK

Correspondence to:
c.m.hickey@bham.ac.uk

CH designed the experiment; DA and JD collected data; CH analysed the data; CH wrote the paper.

This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 804360 to CH). Thanks to Daniele Pollicino and Giacamo Bertazzoli for stimuli preparation and Damiano Grignolio for discussion.
Reward-related activity in the dopaminergic midbrain is thought to guide animal behaviour, in part by boosting the perceptual and attentional processing of reward-predictive environmental stimuli. In line with this incentive salience hypothesis, studies of human visual search have shown that simple synthetic stimuli – like lines, shapes, or Gabor patches – capture attention to their location when they are characterized by reward-associated visual features like colour. In the real world, however, we commonly search for members of a category of visually-heterogenous objects – like people, cars, or trees – where category examples do not share low-level features. Is attention captured to examples of a reward-associated real-world object category? Here, we have human participants search for targets in photographs of city- and landscapes that contain task-irrelevant examples of a reward-associated category. We use the temporal precision of EEG machine learning and ERPs to show that these distractors acquire incentive salience and draw attention, but do not capture it. Instead, we find evidence of rapid, stimulus-triggered attentional suppression, such that the neural encoding of these objects is degraded relative to neutral objects. Humans appear able to suppress the incentive salience of reward-associated objects when they know these objects will be irrelevant, supporting the rapid deployment of attention to other objects that might be more useful. Incentive salience is thought to underlie key behaviours in eating disorders and addiction, among other conditions, and the kind of suppression identified here likely plays a role in mediating the attentional biases that emerge in these circumstances.
Significance Statement

Like other animals, humans are prone to notice and interact with environmental objects that have proven rewarding in earlier experience. However, it is common that such objects have no immediate strategic use and are therefore distracting. Do these reward-associated real-world objects capture our attention, despite our strategic efforts otherwise? Or are we able to strategically control the impulse to notice them? Here we use machine learning classification of human electrical brain activity to show that we can establish strategic control over the salience of naturalistic reward-associated objects. These objects draw our attention, but do not necessarily capture it, and this kind of control may play an important role in mediating conditions like eating disorder and addiction.
Humans and other animals preferentially approach stimuli that have been associated with positive outcome in prior experience, and this is thought to involve an impact of reward on perception and attention. By this *incentive salience hypothesis*, reward-elicited activity in the dopaminergic midbrain impacts perceptual systems, causing reward-predictive stimuli to become salient and attention-drawing and ensuring the information carried by these objects gains access to decision making and motor control (Berridge & Robinson, 1998). This bias is thought to be independent of strategy, with reward-associated stimuli drawing attention even when this is inconsistent with goals.

In line with this, visual search experiments in humans have shown that irrelevant reward-associated stimuli interfere with task-focused behaviour (e.g. Della Libera & Chelazzi, 2009; Hickey, Chelazzi, & Theeuwes, 2009; Anderson, Laurent, & Yantis, 2011; Le Pelley, Pearson, Griffiths, & Beesley, 2015) and this has been linked to activity in dopaminergic brain nuclei (Hickey & Peelen, 2015, 2017; Barbaro, Peelen, & Hickey, 2017) and to the concentration of intrasynaptic dopamine in these areas (Anderson et al., 2016). The representative behavioural finding is that responses to a target are slower and less accurate when the environment contains a reward-associated distractor. Though this behavioural effect is ambiguous – it is potentially a product of filtering costs and the need for cognitive control rather than the capture of attention – results from EEG and MEG have convincingly demonstrated that attention is deployed to the reward-associated stimulus, for example by showing that reward-associated distractors elicit an N2pc (Luck & Hillyard, 1994), a component of the event-related potential (ERP) linked to attentional selection and resolution (e.g. Hickey, Chelazzi, & Theeuwes, 2009; Qi, Zeng, Ding, & Li, 2013; Donohue, Hopf, Bartsch, Schoenfeld, Heinze, & Woldorff, 2016). Similarly, MRI results have demonstrated sensitivity to reward-associated distractors in early visual cortex (Itthipuripat, Vo, Sprague, & Serences, 2019).
Importantly, this existing body of work has relied on visual search arrays composed of synthetic objects - circles, squares, lines or Gabor patches presented in regular arrays and characterized by saturated primary colours. In roughly the same timeframe as these studies, a separate literature has demonstrated that the exclusive use of such stimuli can lead to misunderstanding of the mechanisms that support visual search (Peelen & Kastner, 2014, for review). Naturalistic search through real-world images is faster than work with synthetic stimuli has suggested should be the case (Thorpe, Fize, & Marlot, 1996), possibly due to the constraining influence of scene semantics and gist (Torralba, Oliva, Castelhano, & Henderson, 2006; Wolfe, Võ, Evans, & Greene, 2011), and real-world search is sensitive to issues like target and distractor familiarity (Hershler & Hochstein, 2009; Mruczek & Sheinberg, 2005) and the characteristic positioning of objects in a scene (Kaiser, Quek, Cichy, & Peelen, 2019).

This motivates the need for dedicated investigation of naturalistic incentive salience. Results from experiments with scene stimuli demonstrate that examples of reward-associated real-world object categories disrupt behavioural responses to targets (Hickey, Kaiser, & Peelen, 2015). Multivoxel classification analysis of fMRI has shown that ventral visual cortex carries more information about a naturalistic reward-associated target than it does a neutral target, but less information about a reward-associated distractor, and this has been interpreted as evidence of the misallocation of attention (Hickey & Peelen, 2015, 2017; Barbaro, Peelen, & Hickey, 2017). The idea here is that the fleeting capture of attention to the distractor is not reflected in the hemodynamic fMRI signal because of the low temporal accuracy of this measure. Instead, fMRI indexes the long-lived post-capture suppression of the distractor that allows attention to be redeployed in search for the target.

These behavioural and imaging results have therefore been interpreted as evidence that reward-associated naturalistic distractors capture attention, but this clearly rests on a pair of questionable assumptions. The first is that the behavioural cost of a reward-associated distractor in naturalistic search necessarily reflects its ability to capture attention; as noted
Figure 1 – Examples of scene stimuli. The two left columns contain examples of trees; the two right columns contain examples of bushes. The rows are organized according to the presence and position of people and cars.
above, the alternative is that these objects are not selected, but nevertheless degrade
behaviour, for example by creating the need for attentional filtering or cognitive control (Folk &
Remington, 1998; Sawaki & Luck, 2010; Gaspelin & Luck, 2019). The second assumption is
that the suppression of reward-associated distractors observed in fMRI is a reaction to
preceding attentional selection; the alternative is that the reward-associated distractor is
suppressed from its first appearance. In the current study, we leverage the temporal precision of
EEG machine-learning classification and ERPs to directly test the idea that attention is captured
to examples of reward-associated distractor categories presented in photographs of real-world
scenes.

Materials and Methods

We had participants search through photographs of scenes for examples of real-world
categories – cars, people, and plants – and report a characteristic of the target category (Figure
1). When the target category was cars or people, participants reported the facing direction of the
target; when the target was plants, they reported if the scene contained trees or bushes.
For each participant, a single category – always either cars or people – was associated
with reward. In blocks where this category was the cued target, correct performance earned 100
points with cash value (Figure 2a). When any other category was the cued target, correct
performance earned only 1 point (Figure 2b). Critically, when participants were cued to search
for a low-reward target category, the scene could contain an example of the high-reward
category as a task irrelevant distractor (Figure 3). Our core interest lay in these conditions,
where we could isolate the neural response to an example of a non-target object as a function
of its prior reward association.
Figure 2 – Trial examples when search is for ‘cars’. A.) In subject group A the high-reward category is ‘cars’, and in this example the current target of search is ‘cars’. The scene contains an example of the target category; for this subject group this is a ‘lateral high-reward target’. The task is to report the facing direction of the target, which is left, and correct response garners high-magnitude reward. B.) In subject group B the high-reward category is ‘people’, but in this example the current target of search is ‘cars’. The scene contains an example of the target category; for this subject group this is a ‘lateral low-reward target’. The task is to report the facing direction of the target, which is left, and correct response garners low-magnitude reward.

The scene stimuli employed in the experiment are visually heterogenous, and physical differences in the images and categories could drive variance in the neural response that might obscure effects of reward association. The experiment had two key features to control for this. First, there were two groups of participants: one group associated reward with cars, the other with people. Second, plants were never associated with reward. Critical conditions were therefore those where participant groups were cued to search for the same neutral low-reward category – plants – and the scenes additionally contained a lateral example of either the high-reward distractor category or the low-reward distractor category (or both, with one presented laterally and the other centrally; see Figures 1 and 3).
Figure 3 – Trial examples for the critical conditions when search is for the low-reward category ‘plants’. In group A the high-reward category is ‘cars’, while in group B the high-reward category is ‘people’. The scenes can contain examples of people or cars, or examples of both categories concurrently. When people and cars are both present in the scene, one example is presented laterally and the other centrally. A.) The scene contains an example of the non-target category people. For group A, this scene contains a ‘lateral low-reward distractor’, whereas for group B this same scene contains a ‘lateral high-reward distractor.’ B.) The scene contains an example of the non-target category cars. For group A, this scene contains a ‘lateral high-reward distractor’, whereas for group B this same scene contains a ‘lateral low-reward distractor’. C.) The scene contains a lateral example of the non-target category people and a central example of the non-target category cars. For group A, this scene contains a ‘lateral low-reward distractor’ and a ‘central high-reward distractor’. For group B this same scene contains a ‘lateral high-reward distractor’ and a ‘central low-reward distractor’. D.) The scene contains a lateral example of the non-target category cars and a central example of the non-target category people. For group A, this scene contains a ‘lateral low-reward distractor’ and a ‘central high-reward distractor.’
Critically, by manipulating the reward association across participant groups, we were able to use the same scenes in each of these experimental conditions. As an example of this, consider the trial illustrated in Figure 3a. For group A, the high-reward target category is cars, but in this example the current target category is plants. The scene contains a single example of a person (alongside examples of the target). For participants in group A, this scene therefore contains a lateral example of the low-reward distractor category. However, for participants in group B, this same scene contains a lateral example of the high-reward distractor category. When results were collapsed across groups, physical differences in the scene stimuli were counterbalanced across participant groups.

In analysis, we use machine learning of EEG data to measure the quality of encoding and representation of reward-associated and neutral distractors, subsequently unpacking classification results through consideration of ERPs. In ERP analysis, our focus lay particularly on the N2pc (Luck & Hillyard, 1994) and Pd components (Hickey, Di Lollo, & McDonald, 2009) as indices of attentional selection and suppression, respectively. To foreshadow, classification and ERP results demonstrate that naturalistic reward-associated distractors are strongly suppressed from the moment they appear.

Participants

Thirty-six healthy volunteers from the University of Birmingham community gave informed consent before completing the experiment. Each participant reported normal or corrected-to-normal vision and was paid for participation. Two participants were rejected from analysis due to poor accuracy in low-reward task conditions (>2.5 SD from the mean), leading to a final sample of 34. Of these, 3 were left-handed, 10 were men, and mean age was 20 years (3 years SD).
Stimuli and Procedure

Participants searched through black and white photographs of real-world scenes (approximately 22° x 17° visual angle) for examples of three different object categories. Figure 1 presents a set of scene examples. The target category changed for each of the 24 experimental blocks, with each block containing 54 trials, and a cue at the beginning of each block identified whether cars, people, or plants were the target category for that set of trials. When participants were cued to search for cars or people, every scene in the block contained a single example of the target category located at the left, middle, or right of the image. Participants were asked to report the facing direction of the target – for example, if the car faced the left or the right – via button press with the left or right hand on a standard computer keyboard. When participants were cued to search for plants, the scenes contained at least one example of a tree or a bush, but not examples of both, and these were located anywhere in the scene. Participants reported whether the scene contained trees or bushes with a corresponding left- or right-hand keyboard response. The target category for each individual block was selected at random with the constraint that each category served as target for an equal number of blocks in the experiment.

The scenes could contain examples of the categories not currently acting as target. For example, when search was for people, the scene could contain examples of cars and plants as task-irrelevant nontargets. When these distractors were cars or people, only a single example appeared and was located at the left, middle, or right of the scene. When the distractors were plants, multiple examples could appear at any location.

When people or cars were the target category, scenes were constrained such that they contained either a lateral example of the target category, a lateral example of the target category and a central example of the other localized distractor category, or a lateral example of the localized distractor category and a central example of the target category (see Figure 1). Equal numbers of these target lateral, target lateral / distractor central, and distractor lateral / target central scenes were presented. In each of these layouts, the facing direction of the target
and the facing direction of the localized distractor were counterbalanced across images within each category, as was the presence of trees or bushes.

When plants were the target category, scenes were constrained such that they contained either a lateral example of a car distractor, a lateral example of a car distractor and a central example of a person distractor, a lateral example of a person distractor, or a lateral example of a person distractor and a central example of a car distractor. Equal numbers of these lateral distractor and lateral distractor / central distractor scenes were presented to the participant and the facing direction of the distractors was counterbalanced across images within each category.

There were 304 scene images in the stimuli set, most taken from a set of 480 images employed in an earlier publication (Hickey, Pollicino, Bertazolli, & Barbaro, 2019) with additional scenes generated using a digital camera. Each core image set (eg. left-located left-facing car, central right-facing person, bush) had 4 to 8 individual examples. Examples from each core image set were used in the experiment in random order until all images in the set had been presented, at which point this process reset in new random order. The scene images were prepared such that the category example in the periphery was roughly equidistant from fixation in each image and such that people and vehicles had roughly consistent size across the image set.

In each trial, correct response was rewarded with points that had cash value, with the magnitude of reward varying as a function of target category. For 17 of the participants, correct responses to car targets resulted in high-magnitude reward (100 points), whereas correct responses to people or plant targets resulted in low-magnitude reward (1 point). For the remaining participants, correct responses to people resulted in high-magnitude reward, with cars and plants associated with low-magnitude reward. The points putatively determined a final pay range of £18 to £24, and participants were instructed to maximize points and therefore
earnings, but at the end of the experiment total earnings were rounded to £24 for all
participants.

The experiment took place in a dimly lit room and participants were seated at
approximately 1 m distance from a 24-inch LED monitor (100 Hz refresh rate). As illustrated in
Figure 2, each experimental block began with a 2 s cue indicating the target category for that
block and a reminder of the high-reward category. Each trial began with presentation of a
fixation cross for 250 to 750 ms (randomly selected from a uniform distribution) followed by
presentation of a scene for 200 ms. The scene was subsequently replaced by a fixation cross
until either the participant responded via keyboard button press or 1750 ms had passed.

Reward feedback was then presented for 1000 ms, after which a new trial began. Feedback
regarding task accuracy and speed was provided at the end of every experimental block and the
session took approximately 2.5 hours, reflecting 1.5 hours of experimental participation and 1
hour of preparation and debriefing. Stimuli presentation relied on PsychToolbox-3 for MATLAB
(Brainard et al., 2008).

EEG Recording and Pre-processing

EEG was recorded at 1 kHz from 64 Ag/AgCl electrodes mounted in an elastic cap using a
Biosemi Active2 amplifier and ActiView acquisition software. Horizontal electrooculogram (EOG)
was recorded from electrodes 1 cm lateral the left and right external canthi, vertical EOG was
recorded from electrodes place directly above and below the left pupil, and two additional
electrodes recorded voltage over the left and right mastoid processes. Electrode offset was
minimized and stabilized prior to the start of recording. EEG was acquired at DC with a 208 Hz
anti-aliasing filter, resampled offline at 512 Hz, re-referenced to the average of mastoid signals,
and band-pass filtered with a Hamming windowed FIR kernel (0.1 to 45 Hz; -6dB at 0.05 Hz and
45.05 Hz). Epochs beginning 1 s before and ending 2 s after each scene onset were extracted
from the data.
Figure 4 – Behavioural results from conditions where ‘cars’ or ‘people’ were the target of search. These results are presented for the sake of completeness; no core hypotheses are tested. In the stylized scene examples employed here and in subsequent figures high-magnitude reward is associated to ‘cars’, but as described in the body of the paper this was counter-balanced across participants. A.) Accuracy. As expected, responses to high-reward targets were more accurate in all conditions. B.) Reaction times. Surprisingly, participants were faster to respond to targets presented in scenes that also contained an example of the localized distractor. This may reflect a qualitative difference in the images; scenes containing only one localized category type happened to be characterized by smaller, harder-to-find target examples. Data collected from presentation of these scenes were not employed to test the core study hypothesis regarding the capture of attention to reward-associated stimuli.

Infomax independent component analysis (Bell & Sejnowski, 1995) was used to identify variance stemming from ocular artifacts in the epoched data. The independent components representing horizontal and vertical eye movements were used to identify trials in which eye movements were made in the 600 ms interval following stimulus onset. Participants moved their eyes in 6 – 18% of trials and these were removed from further analysis. Components representing eye and muscle artifacts were subsequently removed from the data, as were trials resulting in incorrect response, and epoched data was baselined on the 200 ms interval preceding scene onset. Experimental conditions were subsequently defined based on the
Figure 5 – Results from conditions where participants searched for plants, which were employed to test motivating experimental hypotheses regarding attentional capture. A.) When participants searched for plants in scenes containing a single additional distractor, accuracy degraded when that distractor was associated with reward. However, when the scene contained both a lateral and a central distractor – and therefore always contained examples of both the high-reward and low-reward distractor categories – accuracy was insensitive to the specific locations of the 2 distractors. C.) Similar results emerge in reaction times. When participants searched for plants in scenes containing a single additional distractor, reaction times increased when that distractor was associated with reward. However, when the scene contained 2 distractors, reaction time was insensitive to the specific location of these distractors.

reward association of the target category (reward-associated car / person, neutral car / person, or neutral plant) and the presence and location of distractor stimuli.

EEG machine learning classification

Our approach to EEG classification is based on linear discriminant analysis (LDA) and cross-fold validation. Each classification analysis interrogates a conditional difference, for example whether a target is located on the left or right of the scene, with the classifier trained to label data as coming from one of these two classes. In each analysis, conditional EEG is partitioned into 10 folds, each balanced to contain an equal number of randomly selected, correctly performed trials from each of the two classes, and a model is built for each
Figure 6 – Results from trial-wise EEG classification. In all analyses, the machine learning algorithm is trained to discriminate between two classes of stimuli and 50% accuracy reflects chance performance. Topographic maps reflect model decision criteria across reward conditions as measured over the latency intervals identified by grey shading in the corresponding time-course plots, which is a 40 ms interval centred on peak decoding accuracy collapsed across conditions. Topographic plots are computed as the mean of spatially z-scored data for each individual and are therefore in SD units; while the topographical pattern is informative, the underlying values are uninformative and as such no scale is provided in the figure. Significant classifier accuracy in each condition is illustrated in the red or blue lines located just above the 50% baseline. a.) Results from classification of target location. This analysis is intended to demonstrate the efficacy of the method, and to investigate the impact of reward association on target processing, but does not test the motivating experimental hypothesis regarding the capture of attention. Analysis does not identify a reliable difference in classification accuracy as a function of target reward association. b.) Results from classification of distractor location. Location classification improves when the distractor is associated with reward. c.) Results from classification of whether the distractor was present in the centre of the scene. Presence classification degrades when the distractor is associated with reward.
combination of 9 data folds. The 10 resulting models – each based on a unique combination of 9 of 10 data folds – are subsequently tested against the individual trials contained in the single fold that did not contribute to model building. There is no trial averaging in our approach, and classification accuracy is defined as the mean testing accuracy across trials and folds. To establish a time-course of classification accuracy, we implemented this modelling and validation procedure for each ~2ms sample point in an epoch beginning 250 ms before the onset of the scene stimulus and ending 1000 ms after. To ensure model stability and accuracy, models were built and tested on data spanning a 61-sample interval centred on the datapoint under consideration (constituting 64 * 61 = 3904 observations of electrode voltage). Each datapoint in classification analyses thus reflects classification performance across a ~120 ms interval centred on the datapoint under consideration. This importantly means that the absolute latency of classification onset should be interpreted with care, as accuracy at a given timepoint reflects the performance of a model with access to data recorded up to ~60 ms later. In contrast, peak classification latency and conditional effects on classification latency can be unambiguously interpreted.

To gain insight on model classification decisions, we extracted model weights in each model building instance. These were subsequently multiplied by the covariance matrix of the data that had been used to build the model, with the results mean averaged across model building iterations and across latency intervals of interest and z-scored within each participant before being mean averaged across participants. This procedure transforms the backward model generated by LDA, which projects a data pattern into an expected class membership, into a forward model, which projects class membership into an expected data pattern (Haufe et al, 2014). The forward model can be topographically plotted to illustrate the classifier decision criteria (see Figure 6).
Statistical analysis of classification accuracy relied on threshold-free cluster enhancement (TFCE; Smith & Nichols, 2009) with clusters defined over time. Conditional differences in classification accuracy were tested using permutation contrasts with 100k iterations based on mean accuracy observed in a 40 ms interval centred on the cross-conditional accuracy peak. Statistical analysis of the latency of classification accuracy relied on a resampling approach. To assess the difference in peak classification latency between conditions we iteratively resampled from the set of 34 participant datasets 100k times with replacement. In each iteration, we averaged classification accuracy for the relevant conditions across the sample, extracted the peak latency for each condition, and calculated the difference in peak latencies. The probability that an observed difference in peak classification latency might have been observed under the null hypothesis was reflected in the proportion of the distribution of difference scores that fell below zero. Classification analyses relied on the COSMOMVPA (Oosterhof, Connolly, & Haxby, 2016) and ADAM toolboxes (Fahrenfort, Van Driel, Van Gaal, & Olivers, 2018) and on custom code.

Event-related potentials

ERPs were calculated using standard signal-averaging (Luck, 2014). Our focus was on the N2pc and Pd components of the visual ERP, which index attentional selection and attentional suppression, respectively, and emerge in visual cortex contralateral to the location of the eliciting stimulus. To isolate these components from bilateral variance in the ERP, we a.) extracted voltage recorded at electrodes located over left visual cortex when the eliciting stimulus was in the right visual field, and averaged this response with b.) voltage recorded at electrodes located over right visual cortex when the eliciting stimulus was in the left visual field. This generated a contralateral waveform and a similar procedure was applied to generate ipsilateral waveforms. Topographic maps of differences in lateralized ERP components are generated by ‘flipping’ EEG data observed when the eliciting stimulus is in the right visual field.
and averaging with EEG data observed when it is in the left visual field, such that the left cortical hemisphere consistently represents ipsilateral cortex and the right cortical hemisphere consistently represents contralateral cortex.

Importantly, when calculated in reference to the objects appearing to the left and right of fixation, the N2pc and Pd are insensitive to lateralized activity evoked by objects in the center of the visual field (Woodman & Luck, 2003; Hickey, McDonald, & Theeuwes, 2006; Hickey, Di Lollo, & McDonald, 2009). For example, consider a display with a central car distractor and a lateral person target, with the central distractor eliciting theoretical right-lateralized ERP activity. When the person target is in the left visual field, the car-elicited effect emerges as positivity in the contralateral signal. But when the person distractor is in the right visual field, the car-elicited effect emerges as negativity in the contralateral signal. When mean target-elicited contralateral signal is calculated, the central distractor has no summed effect.

Statistical analysis of ERP component amplitude depended on parametric repeated-measures ANOVA (RANOVA). Lateral ERPs were statistically assessed in two latency intervals: 220 – 280 ms, when the N2pc and Pd are known to emerge with maximum amplitude (Luck & Hillyard, 1994; Hickey, Di Lollo, & McDonald, 2009), and 100 – 160 ms, when an early expression of the Pd is known to emerge (Weaver, van Zoest, & Hickey, 2017; Sawaki & Luck, 2010). ERP analysis relied on the EEGLAB toolbox (Delorme & Makeig, 2004) and custom code. Additional control analyses involving linear mixed models and Bayesian model comparison are described in the results section and depend on the fitlme.m function implemented in the MATLAB statistic toolbox (R2021b) and the BayesFactor toolbox (https://klabhub.github.io/bayesFactor) with default priors.
Figure 7 – Relationship between classification of distractor location and distractor presence across participants. Statistical analysis reflects permutation analysis with 100k iterations, an approach that is robust to the influence of outliers.

Results

Behaviour

Outliers were defined as responses where reaction time (RT) was more than 3 SD from the participant mean and were rejected from further analysis (1.3% of trials, 0.4% SD). Accuracy and RT are illustrated in Figures 4 and 5. The results illustrated in Figures 4a and 4b are presented largely for the sake of completeness as no critical experimental hypotheses are tested. As expected, participants were more accurate when correct response to the target garnered high-magnitude reward (Figure 4a). Unexpectedly, they were slower to respond to the target when the distractor was absent from the scene (Figure 4b).

Results from the critical plant target condition are presented in Figure 5. When a lateral distractor was present in the scene during search for a plant, the association of reward to the
distractor decreased accuracy (Figure 5a, left of panel) and increased RT (Figure 5b, left of
panel). When the scene contained both a lateral distractor and a central distractor – and
therefore contained both a reward-associated and a neutral distractor – the specific location of
the reward-associated and neutral distractors did not have an impact on accuracy (Figure 5a,
right of panel) or RT (Figure 5b, right of panel).

Statistical analysis of accuracy in the plant target condition took the form of a RANOVA
with factors for group (cars are reward-associated vs. people are reward-associated), reward
association of lateralized distractor (reward-associated lateral distractor vs. neutral
lateral distractor), and presence of central distractor (central distractor present vs. central
distractor absent). This identified a main effect of distractor reward association (F(1,32) = 18.68,
\(p < 0.001, \eta^2_p = 0.369\)), reflecting the decrease in accuracy when a reward-associated distractor
was present, and an interaction of distractor reward association and central distractor presence
(F(1,32) = 22.19, \(p < 0.001, \eta^2_p = 0.410\)), reflecting accentuation of this effect when the central
distractor was absent from the scene. No other effects reached significance (central distractor
presence: F(1,32) = 3.09, p = 0.088; group X distractor reward association: F(1,32) = 2.91, p =
0.098; group X central distractor presence: F(1,32) = 2.66, p = 0.113; 3-way interaction: F(1,32)
= 1.74, p = 0.196; all other Fs < 1).

A similar pattern of results emerged from analysis of RT. A RANOVA with the same
factors identified a main effect of distractor reward association (F(1,32) = 41.30, \(p < 0.001, \eta^2_p =
0.563\)) and a main effect of central distractor presence (F(1,32) = 94.84, \(p < 0.001, \eta^2_p = 0.747\),
alongside an interaction of distractor reward association and central distractor presence (F(1,32)
= 59.12, \(p < 0.001, \eta^2_p = 0.649\)). No other effects reached significance (group: F(1,32) = 1.73, p
= 0.198; all other Fs < 1).

The critical observation from these behavioural results is that the reward-associated
distractor decreased accuracy and increased RTs relative to the neutral distractor. As we found no behavioural differences between the two subject groups, we collapse across this distinction in subsequent analysis of electrophysiological data.

EEG classification

As illustrated in Figure 6, we conducted three independent classification analyses of EEG data. The first was focussed on trials where participants searched for cars or people, separating these into conditions based on the location of the target (left hemifield vs right hemifield) and the reward association of the target (reward-associated target vs neutral target). This analysis did not directly test our motivating hypothesis regarding attentional capture to distractor stimuli, but it allowed us to characterize how classification of target location emerged in EEG data and describe the impact of reward association on target processing. Classifiers were trained to identify the location of the lateral target for each of the reward-associated and neutral target conditions separately. As presented in Figure 6a, classification accuracy at the cross-conditional peak (231 – 271 ms) did not reliably differ as a function of the target reward association (p = 0.440). Accuracy subsequently diverges between conditions, but this difference did not survive cluster correction for multiple comparisons.

The topographic map presented in Figure 6a illustrates a forward projection of the classification model collapsed across reward-associated and neutral target conditions and averaged over the 231 to 271 ms interval identified by grey shading in the figure. The scalp map shows a lateral pattern, with the model classifying a trial as containing a target in the left hemifield when right posterior cortex had more negative voltage, and vice versa. This suggests that the model is loading on variance that also underlies the N2pc, as has been observed in earlier classification analysis of EEG from visual search (Fahrenfort, Grubert, Olivers, & Eimer, 2017). Results from this classification analysis appear to reach a ceiling, with reward association not causing the EEG signal to carry additional information about the target location.
Figure 8 – Target-elicited ERPs in car / person target conditions. In the stylized stimulus examples here and in Figure 7 the reward-associated category is ‘cars’, but this was counter-balanced across participants in the actual experiment. Note that here and in Figure 7 negative voltage is plotted upward by convention and the ERPs reflect mean signal observed at the lateral electrode clusters identified by large marker in the topographic maps in Figure 7.

a.) The posterior lateral ERPs elicited by a scene containing a peripheral neutral target. The N2pc is apparent as the difference between contralateral and ipsilateral waveforms beginning around 200 ms post-stimulus. b.) The ERPs elicited by a scene containing a peripheral reward-associated target. c.) The ERPs elicited by a scene containing a peripheral neutral target when a task-irrelevant example of the reward-associated category is present in the centre of the scene. d.) The ERPs elicited by a scene containing a peripheral reward-associated target when a task-irrelevant example of the neutral target category is present in the centre of the scene. e.) Contralateral-minus-ipsilateral difference waves for the ERPs illustrated in panels A and B. The N2pc is reflected in negative deflection of the difference wave and does not reliably differ as a function of target reward association. f.) Difference waves for the ERPs illustrated in panels C and D. As in panel E, the N2pc does not reliably differ as a function of target reward association.
The second classification analysis is analogous to that described above but focussed on classification of distractor location and limited to trials where participants searched for plants. This analysis tests the motivating idea for the study, namely that reward association might impact neural responses to distractor stimuli indexing attentional selection. As illustrated in Figure 6b, distractor location classification emerged quickly and showed a marked difference as a function of whether the distractor category had been associated with reward in prior experience. Across an interval centred on the cross-conditional classification peak (181 - 221 ms), accuracy was significantly greater when the distractor was taken from the reward-associated stimulus category rather than the neutral stimulus category ($p = 0.028$). The EEG signal thus carried more information about the location of the reward-associated distractor than it did about the location of the neutral distractor.

At first blush, this pattern is consistent with the idea that attention is captured by examples of the reward-associated distractor category. This mis-deployment of attention could cause the EEG signal to carry more information about the distractor location, and this could be associated with the degradation of overt response to the target. However, consideration of the topographic maps illustrated in Figures 6a and 6b identifies an inconsistency in this account. The forward projection of the classification model for distractor localization shows that the model classified a trial as containing a distractor in the left visual hemifield when signal over right posterior cortex had voltage more positive than that over left posterior cortex, and vice versa. This contrasts with results from classification of target location, where contralateral negativity, not positivity, contributed to the model decision.

To probe this disparity, we conducted an additional analysis to classify whether a scene contained a central distractor. This was again based on data collected while participants searched for plants, but rather than classifying distractor location, the model labelled trials as either containing a distractor in the centre of the photograph, or not. As illustrated in Figure 6c,
Figure 9 – Distractor-elicited ERPs in plant target conditions. a.) The posterior lateral ERPs elicited by a scene containing a peripheral neutral distractor. b.) The ERPs elicited by a scene containing a peripheral reward-associated distractor. c.) The ERPs elicited by a scene containing a peripheral neutral distractor when a reward-associated distractor is present in the centre of the scene. d.) The ERPs elicited by a scene containing a peripheral reward-associated distractor when a neutral distractor is present in the centre of the scene. e.) Contralateral-minus-ipsilateral difference waves for the ERPs illustrated in panels A and B. The N2pc is reflected in negative deflection of the difference wave and the PD is reflected in positive deflection. f.) Difference waves for the ERPs illustrated in panels C and D. Topographic maps reflect the conditional difference in voltage observed in the intervals identified by grey shading in the difference waves.
the machine learning algorithm was able to perform this task well, with cross-conditional peak
decoding accuracy emerging at 176 ms. Topographic projection of the forward model suggests
that the classification decision depended on emergence of brain activity in both visual cortex
and frontocentral cortex. Classification accuracy was better when the central distractor had
been previously associated with neutral outcome than with reward outcome (156 – 196 ms
interval; p = 0.025).

There is the possibility that distractor location classification and distractor presence
classification are related to one another. That is, the contralateral positivity that emerges in
classification of distractor location might reflect activation of a mechanism in visual cortex that
also emerges when a distractor is present in the center of the scene. Consistent with this,
classification of distractor presence appears to depend on bilateral posterior positivity (Figure
6c). However, reward association has a positive impact on distractor location classification, but
a negative effect on distractor presence classification, and this pattern is hard to explain if
classification in both instances is associated with the same EEG variance.

An alternative account for this pattern – better classification of the location of a reward-
associated distractor, but poorer identification of the presence of a reward-associated distractor
– is that the reward-associated distractor is suppressed in the post-stimulus interval. Under this
premise, classification of the reward-associated distractor is more accurate because this
stimulus triggers a response in contralateral visual cortex – a Pd – that acts to inhibit encoding
of this stimulus. The machine learning algorithm uses this index of visual suppression to infer
distractor location, but separate classification of stimulus presence is poor because this
suppression leads to a degraded encoding of the stimulus and its associated category.

We conducted two additional analyses of classification accuracy to further test this
interpretation. In the first, we examined the latency of peak decoding accuracy for distractor
location and distractor presence separately for reward-associated and neutral distractors. Peak
classification of the presence of a reward-associated distractor emerged at roughly the same
latency as peak classification of the location of a reward-associated distractor (209 ms vs 195 ms; -14 ms difference). However, peak classification of the presence of a neutral distractor preceded peak classification of its location (176 ms vs 264 ms; 89 ms difference). Resampling statistics based on these difference scores suggested that the difference in latencies observed for the neutral distractor reliably differed from those observed for the reward-associated distractor (p = 0.038), with follow-up contrasts failing to identify a latency difference between location classification and presence classification for reward-associated distractors (p = 0.276) but identifying a marginal trend for neutral distractors (p = 0.061). This suggests that the EEG signal may carry information about the presence of the neutral distractor that precedes information about its location, consistent with classic theoretical perspectives proposing that diagnostic feature information is extracted from visual input before being localized (Treisman & Gelade, 1980; Wolfe, Cave, & Franzel, 1989). This does not occur for the reward-associated distractor, in line with the idea that brain activity underlying location classification leads to a degraded representation of the distractor, and therefore poorer classification of object presence.

In the second analysis, we tested the relationship between the effect of reward on distractor location classification and presence classification. If the EEG variance that supports location classification causes poor classification of distractor presence, there should be a negative relationship between these effects across the experimental sample. To this end, we extracted average location and presence classification accuracy across a 100 – 300 ms latency range for each of the high-reward and low-reward conditions for each of the 34 participants. This interval includes latencies where mechanisms of target processing and distractor suppression are known to emerge in the EEG and ERP (Luck & Hillyard, 1994; Hickey, Di Lollo, & McDonald, 2009; Weaver, van Zoest, & Hickey, 2017). As illustrated in Figure 7, as classification accuracy for high-reward distractors increased across individuals (relative to low-reward distractors), presence classification decreased (relative to low-reward distractors).
ERPs

Classification of target location appears to rely on emergence of contralateral negativity in posterior cortex, suggesting it is driven by variance underlying the N2pc, whereas classification of distractor location appears to rely on emergence of contralateral positivity, suggesting it is driven by the Pd. However, results from classification leave some ambiguity regarding the contribution of these posterior effects to classification. It is particularly unclear if the difference in distractor location classification as a function of reward association is driven by the Pd or other sources of variance in the EEG signal.

To address this ambiguity, and to generally unpack the classification results, we extracted ERPs from the experimental data and isolated the N2pc and Pd components. Figure 8 illustrates ERP results when the target of search was a car or person and the target appeared at a lateral location. These analyses do not test our core motivating hypothesis regarding the capture of attention to reward-associated distractors, but, as with classification of target location, allows us to additionally characterize how reward association impacted target processing and to identify the relationship between ERP results and classification. Lateral waveforms are presented in Figures 8A through 8D, and contralateral-minus-ipsilateral difference waves are presented in Figures 8E and 8F. When the lateral target was presented without a central distractor, it elicited a robust N2pc that did not reliably vary as a function of the manipulation of reward outcome (Figure 8E). A smaller N2pc was elicited by the lateral target when a central distractor was present in the scene, reflecting the distracting effect of a prominent foreground non-target at fixation, but, again, the N2pc did not show a reliable effect of target reward association (Figure 8F). The N2pc results are thus very similar to the pattern observed in classification accuracy (Figure 4A). In line with this, the N2pc elicited by a lateral target reliably correlates with target location classification across participants (mean 200 – 300 ms, r = 0.273, p = 0.028, permutation test with 100k iterations).
To statistically assess the pattern of results in target-elicited N2pc, we conducted a RANOVA based on mean ERP amplitude from 220 – 280 ms, a latency interval where the N2pc is known to be maximal (Luck & Hillyard, 1994) and where it emerged prominently in the current data. The RANOVA had factors for electrode laterality (ipsilateral vs contralateral), target reward association (reward vs neutral), and central distractor presence (present vs absent), and identified main effects of electrode laterality \((F(1,33) = 73.74, p < 0.001, \eta^2_p = 0.691) \), reflecting consistent emergence of N2pc across conditions, and central distractor presence \((F(1,33) = 5.15, p = 0.030, \eta^2_p = 0.135) \), reflecting a positive shift in the bilateral ERP when the distractor was present. Electrode laterality interacted with distractor presence \((F(1,33) = 33.49, p < 0.001, \eta^2_p = 0.504) \), reflecting the increase in N2pc amplitude in the distractor absent condition, but no other interactions emerged \((\text{reward X distractor presence: } F(1,33) = 1.34, p = 0.255; \text{all other Fs } < 1) \).

Figure 9 illustrates ERP results when search was for plants and a reward-associated or neutral distractor appeared at a lateral location. Results from these critical experimental conditions directly address motivating hypotheses regarding the capture of attention to reward-related distractors. Lateral waveforms are presented in Figures 9A through 9D, and contralateral-minus-ipsilateral difference waves are presented in Figures 9E and 9F. When the lateral distractor appeared without a central distractor it elicited a lateral response that had both positive and negative components (Figure 9E). This may reflect the imbalance in sensory energy in these scenes; the lateral distractor is a prominent foreground object in these photographs without a corresponding object in the contralateral field, and this imbalance in sensory stimulation may have elicited contralateral activity in visual cortex linked to sensory and perceptual processing unrelated to the deployment of attention. The important observation is that the lateral ERP consistently has more positive polarity in the latency of N2pc and Pd when the eliciting distractor has been associated with reward. This is the case both when the scene contains a central distractor (Figure 9F) and when it does not (Figure 9E). This relative positivity
in the lateral ERP suggests that selection of the reward-associated distractor was degraded, relative to selection of the neutral distractor.

We statistically assessed this pattern in two latency intervals: 100 – 160 ms, which corresponds to the interval when early Pd emerges (Weaver, van Zoest, & Hickey, 2017; Sawaki & Luck, 2010), and 220 – 280 ms, when the N2pc and Pd are maximal (Luck & Hillyard, 1994; Hickey, Di Lollo, & McDonald, 2009). In both cases, RANOVA analysis had factors for electrode laterality (ipsilateral vs contralateral), distractor reward association (reward vs neutral), and central distractor presence (present vs absent). Results from the early latency period identify a single main effect of distractor presence (F(1,33) = 11.65, p = 0.002, η²p = 0.261) alongside an interaction of electrode laterality and distractor reward association (F(1,33) = 4.32, p = 0.046, η²p = 0.116), reflecting the positive shift in the lateral waveform elicited by a reward-associated distractor, and an interaction of electrode laterality and distractor presence (F(1,33) = 15.48, p < 0.001, η²p = 0.319), reflecting the negative shift in the lateral waveform when the central distractor was present (electrode laterality: F(1,33) = 3.80, p = 0.060; reward: F(1,33) = 1.84, p = 0.184; all other Fs < 1). Much the same pattern emerged in analysis of the later time window, with a main effect of electrode location (F(1,33) = 4.13, p = 0.050, η²p = 0.111), an interaction of electrode location and reward (F(1,33) = 6.23, p = 0.018, η²p = 0.159), an interaction of electrode location and distractor presence (F(1,33) = 13.43, p < 0.001, η²p = 0.289), but no other effects (reward: F(1,33) = 2.13, p = 0.154; distractor presence: F(1,33) = 2.33, p = 0.134; all other Fs < 1). To relate these ERP effects to classification, we extracted the contralateral signal in the distractor-elicited ERP, collapsing across reward conditions but focussing on the 100 – 300 ms interval where these effects emerged. Increase in positivity in the ERP in this interval reliably predicted an increase in distractor location classification accuracy across individuals (r = 0.304, p = 0.036, permutation test with 100k iterations). This supports the notion that distractor location classification loads on the Pd, as suggested above.
One possibility is that the accentuated suppression of high-reward distractors we identify in Figure 9 is a reaction to the deployment of attention to the reward-associated distractor. However, this hypothesis – deployment of attention to the distractor followed by distractor suppression – should express as an initial contralateral negativity followed by a contralateral positivity (eg. Sawaki & Luck, 2013; Hickey, McDonald, & Theeuwes, 2006). Instead, lateral positivity emerges very quickly, approximately 40 ms after afferent activity reaches visual cortex, leaving little opportunity for preceding cognitive operations.

Another possibility is that the reward-associated distractor may initially draw attention within each block, but that participants learn to rapidly suppress this object as they gain experience, either strategically or through the influence of implicit statistical learning (Ferrante, Patacca, Di Caro, Della Libera, Santandrea, & Chelazzi, 2018; Ferrante, Zhigalov, Hickey, & Jensen, 2023). This predicts that the difference in lateral response to neutral and reward-associated distractors should change over the 54 trials in a block. In the extreme case, the reward-associated distractor could initially elicit a contralateral negativity – indicative of attentional capture – but later a contralateral positivity, reflecting the establishment of inhibitory control.

To test this, we used linear modelling and Bayesian model comparison to assess the impact of trial position within an experimental block. We split observations from each block of trials into two sets, one describing observations from the first half of a block and the other describing those from the second half of a block. If the difference in lateral ERP elicited by reward-associated versus neutral distractors changes over the course of an experimental block, this should emerge as a 3-way interaction of electrode location (ipsilateral vs contralateral), distractor reward association (reward vs neutral), and block position (first half of block vs second half of block). To measure the impact of this 3-way interaction, we repeatedly built mixed linear models for each of the two latency intervals of interest. An initial full model included a random intercept for each experimental participant and fixed factors for reward, distractor presence,
electrode location, block position, and all possible interactions between these factors. A restricted model included all these factors, except for the interaction of electrode location, reward, and block position. Bayesian statistics were used to compare the full and restricted models, generating Bayes factor values for each of 1000 iterated model instances that were subsequently mean averaged. Results from analysis of the early latency interval (100 - 160 ms) revealed moderate to strong evidence in favour of the null hypothesis of statistical equivalence of the full and restricted models (average BF = 0.127), and analysis of the late interval generated similar results (220 - 280 ms; average BF = 0.140). The difference in lateral response to reward-associated and neutral distractors - statistically expressed in the interaction of electrode position and reward - therefore appears insensitive to the position of a trial within an experimental block. This suggests that the stimulus-driven suppression indexed in Pd emerges quickly and does not require extended experience of the distractor category.

Discussion

We tested the idea that examples of a reward-associated object category capture attention during search through photographs of real-world scenes. Participants searched for examples of a cued target category – cars, trees, or people – while we recorded electrical brain activity. Importantly, the scenes contained examples of the non-target object categories as task irrelevant distractors. One of the 3 object categories was associated with financial reward, and our interest lay in conditions where search was for a neutral target, but the scene happened to contain an example of the reward-associated category as a task-irrelevant distractor. Behavioural analysis show that participants were slower and less accurate to respond to the target in this circumstance, compared to when the scene contained a neutral distractor. This behavioural pattern has two possible explanations: attention may be captured to the reward-associated distractor, or the reward-associated distractor may create filtering costs and the need for cognitive control. Results from EEG unambiguously show that the behavioural effect is
not a reflection of attentional capture. Instead, it appears that the reward-associated distractor is suppressed almost immediately after the scene appears. This suppression is indexed in a shift in distractor-evoked brain activity toward contralateral positivity, indicative of emergence of the Pd component of the visual ERP (Hickey, Di Lollo, & McDonald, 2009; van Zoest, Huber, Weaver, & Hickey, 2021), and in degraded accuracy of machine learning classification of distractor presence.

These results contrast with those from existing EEG and MEG studies employing synthetic visual search arrays, where reward-associated distractors appear to robustly capture attention. For example, Hickey, Chelazzi, and Theeuwes (2010) had participants search for a uniquely shaped target in an array of distractors, one of which had unique color. When selection of the target resulted in high magnitude reward, and the target and salient distractor colors subsequently swapped between trials, the distractor captured attention and elicited a robust N2pc. Similarly, Qi et al., (2013) employed a training paradigm to associate reward to a color. When the task changed, and color was rendered task irrelevant, distractors characterized by the reward-associated color continued to capture attention and elicit an N2pc. In these and other studies, reward appears to impact the representation of the task-irrelevant target-characterizing feature such that stimuli with this feature capture attention.

Why do reward-associated synthetic distractors capture attention, but reward-associated naturalistic distractors do not? One important observation is that the locus of learning differs across these two contexts. In the studies of synthetic visual search described above, learning presumably involves relatively early visual cortex where low-level features are represented. In studies of naturalistic vision, by contrast, reward is associated to a visually heterogenous category of real-world objects where category membership is not predicted by the presence of specific low-level visual features, and learning impacts encoding in ventral visual cortex, where mid-level features and visual semantics are represented (eg. Hickey & Peelen, 2015, 2017). The association of reward to low-level features may lead to quicker and stronger effects on
visual resolution. A second, related observation is that the simplified context of synthetic visual
search may provide a better opportunity for incentive salience to cause attentional capture.
Relative to naturalistic environments, synthetic search arrays contain only a small set of objects
that are characterized by a limited set of non-overlapping visual features. Reward-associated
objects may become particularly prominent in this impoverished setting in a way that does not
occur in the richer and more complicated context of real-world scenes. Finally, there is the
possibility that these differences of perceptual complexity may impact how attentional
mechanisms are recruited during search. It may be that the rapid suppression we observe here
is only strategically recruited when the visual field contains perceptually complex information
with strong competition for limited resources. In line with this, results have shown that reward-
associated synthetic distractors are also suppressed in early visual cortex, but only when
perceptual competition is high (Gong, Jia, & Li, 2017).

The idea that reward-associated naturalistic distractors draw attention, but do not
necessarily capture it, is broadly in line with a deep literature in visual cognition centred on the
idea of signal suppression (eg. Folk & Remington, 1998; Leber & Egeth, 2006; Gaspar &
McDonald, 2014; Sawaki & Luck, 2010; see Gaspelin & Luck, 2018, for review). The key
proposal here is that salient stimuli may elicit representation in ‘salience maps’, but that signal at
this stage of visual processing can be suppressed so that it does not impact the ‘priority maps’
that ultimately determine how attention is deployed. For example, in Sawaki and Luck (2010)
participants searched through arrays of letters for a target defined by combination of size and
character. One of the non-target letters was rendered salient by unique color and results
showed that these distractors elicited a prominent Pd component in the ERP, reflecting
suppression. As in the current study, this Pd emerged from very soon after stimulus onset,
leaving little opportunity for preceding attentional operations. The authors suggested that the
salient distractor elicited a salience signal that drew attention to its location. However, because
participants knew this salience signal would only identify task-irrelevant stimuli, they strategically
inhibited this signal so that the underlying stimulus did not gain selective control (cf. Bacon & Egeth, 1994; see also Sawaki, Geng, & Luck, 2012; Stillwell, Egeth, & Gaspelin, 2022; Drisdelle & Eimer, 2021). The current results suggest that this signal suppression hypothesis can be broadened to describe visual processing of stimuli rendered attention-drawing through reward association. In critical conditions, participants knew that stimuli characterized by incentive salience were task irrelevant. They appear to have been able to establish control through suppression, stopping the deployment of spatial attention and limiting the encoding of information about the task-irrelevant object.

If the distractor is suppressed, why is its presence associated with a behavioural cost?

Some studies of synthetic visual search find that emergence of distractor suppression is associated with an elimination of behavioural distractor costs (eg. Sawaki & Luck, 2010; Gaspelin & Luck, 2018). However, it is more common to find that distractor suppression reduces distractor costs but does not eliminate them (eg. Burra & Kerzel, 2014; Gaspar & McDonald, 2014; Jannati, Gaspar, & McDonald, 2013; Kiss, Grubert, Petersen, & Eimer, 2012). One account for this pattern is that the stimulus-triggered distractor suppression is inefficient. Models of visual attention suggest that the primary purpose of attentional suppression is to shelter neural representations of attended stimuli, limiting interference during the transformation of target information to decisions and behaviour (eg. Desimone & Duncan, 1998; Luck et al., 1997; Tsotsos et al., 1995). If stimulus-triggered suppression is delayed or inefficient, distractors may still interfere with ongoing cognition, though to a lesser degree. A complementary possibility is that residual distractor costs may not reflect interference at all, but rather the cognitive load of stimulus-triggered suppression. By this, effective implementation of stimulus-triggered distractor suppression, which must occur quickly following stimulus onset, may take time and resources, delaying or diminishing the deployment of attention to the target and in this way impacting the speed and accuracy of response (Treisman, Kahneman, & Burkell, 1983; Folk & Remington, 1998).
To date, the body of neuroscientific literature examining incentive salience in naturalistic visual search has largely relied on fMRI, showing that information about reward-associated distractor categories is degraded in ventral visual cortex (Hickey & Peelen, 2015, 2017; Barbaro, Peelen, & Hickey, 2017; Seidl, Peelen, & Kastner, 2012). This has been counter-intuitively interpreted as evidence of the capture of attention to these stimuli. The logic here is that capture will be quick and followed by longer-lived suppression of the distractor to allow search for the target to continue. The notoriously poor temporal resolution of fMRI means that any accentuation of distractor information due to capture is subsumed by the subsequent suppression, and thus that the suppression can be interpreted as a proxy index of capture. The current results challenge this account by showing that the reward-associate distractor is suppressed very quickly in the post-stimulus interval, leaving little opportunity for prior selection.

It is important to point out that, even within this new interpretation, evidence of suppression – here in the EEG signal, there in the fMRI signal - remains a valid index of the existence and strength of incentive salience. Naturalistic visual objects imbued with incentive salience are attention drawing and need to be strategically suppressed if they are not to be selected.

Incentive salience is thought to be of key importance to human addictive behaviour (Robinson & Berridge, 2008). Direct drug stimulation of the midbrain dopamine system is thought to lead to the attribution of incentive salience to drug-related objects and environments. When these objects and environments are encountered in the future, they become difficult to ignore and, once noticed, induce craving and drug-seeking behaviour. In line with this, many studies have reported that task-irrelevant, drug-related stimuli interfere with task-relevant behaviour (see Field & Cox, 2008, for review). However, metanalysis suggests that the relationship between drug craving and attentional bias is not strong (Field, Munafò, & Franken, 2009) and the clinical relevance of attentional bias in addictive behaviour is the subject of continuing debate (eg. Christiansen, Schoenmakers, & Field, 2015). This may reflect the mediating influence of strategic attentional control on drug-induced attentional bias. If attentional
bias to drug-related stimuli can be reduced through strategic attentional control, drug-related stimuli may be suppressed rather than selected (Garavan & Hester, 2007). This idea is consistent with the broad notion that addictive behaviour is closely linked to reduced activity in inhibitory prefrontal brain regions (Goldstein & Volkow, 2011). It is also consistent with recent results from studies of attentional bias in restrained eating. Though results in the eating literature vary, some studies show that task-irrelevant images of high-caloric foods interfere with strategic behaviour more strongly in un-restrained eaters than in restrained eaters, suggesting that restrained eaters strategically suppress processing of the food stimuli (Forestell, Lau, Gyuvorski, Dickter, & Haque, 2012; Veenstra, de Jong, Koster, & Roefs, 2010; Werthamm, Jansen, & Roefs, 2016; though see Meule, Vögele, & Kübler, 2012; Neimeijer, de Jong, & Roefs, 2012; see Werthamm, Jansen, & Roefs, 2015, for review). A core puzzle in our understanding of addiction and eating disorders is that the same experiences and context can lead to dire disorder in one individual, but leave another unscathed, and there is clear opportunity for research on the strategic attentional control of incentive salience in mediating these outcomes.

To conclude, we demonstrate that prior reward association can cause examples of a category or real-world objects to become salient and attention-drawing. However, these objects do not necessarily capture attention. Participants can establish strategic attentional control over these stimuli, suppressing their representation without the preceding allocation of attention to their location. This neural mechanism for control over incentive salience appears to support adaptive, strategic information-gathering in the natural environment.
References

A. Group A
- Current target = Cars
- Reward category = Cars
- Lateral high-reward target
- 200 ms
- 250 - 750 ms
- until response or 1750 ms
- 1000 ms

B. Group B
- Current target = Cars
- Reward category = People
- Lateral low-reward target
- time
- the same scene image

+100
+1
A. Car / Person Target

Accuracy (% correct)

B. Car / Person Target

Reaction Time (ms)

- Lateral Target, Central Distractor Absent
- Lateral Target, Central Distractor
- Central Target, Lateral Distractor

High-Reward Target
Low-Reward Target