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Abstract 21 

Reward-related activity in the dopaminergic midbrain is thought to guide animal behaviour, in 22 

part by boosting the perceptual and attentional processing of reward-predictive environmental 23 

stimuli. In line with this incentive salience hypothesis, studies of human visual search have 24 

shown that simple synthetic stimuli – like lines, shapes, or Gabor patches – capture attention to 25 

their location when they are characterized by reward-associated visual features like colour. In 26 

the real world, however, we commonly search for members of a category of visually-27 

heterogenous objects – like people, cars, or trees – where category examples do not share low-28 

level features. Is attention captured to examples of a reward-associated real-world object 29 

category? Here, we have human participants search for targets in photographs of city- and 30 

landscapes that contain task-irrelevant examples of a reward-associated category. We use the 31 

temporal precision of EEG machine learning and ERPs to show that these distractors acquire 32 

incentive salience and draw attention, but do not capture it. Instead, we find evidence of rapid, 33 

stimulus-triggered attentional suppression, such that the neural encoding of these objects is 34 

degraded relative to neutral objects. Humans appear able to suppress the incentive salience of 35 

reward-associated objects when they know these objects will be irrelevant, supporting the rapid 36 

deployment of attention to other objects that might be more useful. Incentive salience is thought 37 

to underlie key behaviours in eating disorders and addiction, among other conditions, and the 38 

kind of suppression identified here likely plays a role in mediating the attentional biases that 39 

emerge in these circumstances.  40 

  41 
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Significance Statement 42 

Like other animals, humans are prone to notice and interact with environmental objects that 43 

have proven rewarding in earlier experience. However, it is common that such objects have no 44 

immediate strategic use and are therefore distracting. Do these reward-associated real-world 45 

objects capture our attention, despite our strategic efforts otherwise? Or are we able to 46 

strategically control the impulse to notice them? Here we use machine learning classification of 47 

human electrical brain activity to show that we can establish strategic control over the salience 48 

of naturalistic reward-associated objects. These objects draw our attention, but do not 49 

necessarily capture it, and this kind of control may play an important role in mediating conditions 50 

like eating disorder and addiction.  51 

  52 
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Introduction  53 

Humans and other animals preferentially approach stimuli that have been associated with 54 

positive outcome in prior experience, and this is thought to involve an impact of reward on 55 

perception and attention. By this incentive salience hypothesis, reward-elicited activity in the 56 

dopaminergic midbrain impacts perceptual systems, causing reward-predictive stimuli to 57 

become salient and attention-drawing and ensuring the information carried by these objects 58 

gains access to decision making and motor control (Berridge & Robinson, 1998). This bias is 59 

thought to be independent of strategy, with reward-associated stimuli drawing attention even 60 

when this is inconsistent with goals.  61 

In line with this, visual search experiments in humans have shown that irrelevant reward-62 

associated stimuli interfere with task-focussed behaviour (eg. Della Libera & Chelazzi, 2009; 63 

Hickey, Chelazzi, & Theeuwes, 2009; Anderson, Laurent, & Yantis, 2011; Le Pelley, Pearson, 64 

Griffiths, & Beesley, 2015) and this has been linked to activity in dopaminergic brain nuclei 65 

(Hickey & Peelen, 2015, 2017; Barbaro, Peelen, & Hickey, 2017) and to the concentration of 66 

intrasynaptic dopamine in these areas (Anderson et al., 2016). The representative behavioural 67 

finding is that responses to a target are slower and less accurate when the environment 68 

contains a reward-associated distractor. Though this behavioural effect is ambiguous – it is 69 

potentially a product of filtering costs and the need for cognitive control rather than the capture 70 

of attention – results from EEG and MEG have convincingly demonstrated that attention is 71 

deployed to the reward-associated stimulus, for example by showing that reward-associated 72 

distractors elicit an N2pc (Luck & Hillyard, 1994), a component of the event-related potential 73 

(ERP) linked to attentional selection and resolution (eg. Hickey, Chelazzi, & Theewues, 2009; 74 

Qi, Zeng, Ding, & Li, 2013; Donohue, Hopf, Bartsch, Schoenfeld, Heinze, & Woldorff, 2016). 75 

Similarly, MRI results have demonstrated sensitivity to reward-associated distractors in early 76 

visual cortex (Itthipuripat, Vo, Sprague, & Serences, 2019).  77 
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Importantly, this existing body of work has relied on visual search arrays composed of 78 

synthetic objects - circles, squares, lines or Gabor patches presented in regular arrays and 79 

characterized by saturated primary colours. In roughly the same timeframe as these studies, a 80 

separate literature has demonstrated that the exclusive use of such stimuli can lead to 81 

misunderstanding of the mechanisms that support visual search (Peelen & Kastner, 2014, for 82 

review). Naturalistic search through real-world images is faster than work with synthetic stimuli 83 

has suggested should be the case (Thorpe, Fize, & Marlot, 1996), possibly due to the 84 

constraining influence of scene semantics and gist (Torralba, Oliva, Castelhano, & Henderson, 85 

2006; Wolfe, Võ, Evans, & Greene, 2011), and real-world search is sensitive to issues like 86 

target and distractor familiarity (Hershler & Hochstein, 2009; Mruczek & Sheinberg, 2005) and 87 

the characteristic positioning of objects in a scene (Kaiser, Quek, Cichy, & Peelen, 2019). 88 

This motivates the need for dedicated investigation of naturalistic incentive salience. 89 

Results from experiments with scene stimuli demonstrate that examples of reward-associated 90 

real-world object categories disrupt behavioural responses to targets (Hickey, Kaiser, & Peelen, 91 

2015). Multivoxel classification analysis of fMRI has shown that ventral visual cortex carries 92 

more information about a naturalistic reward-associated target than it does a neutral target, but 93 

less information about a reward-associated distractor, and this has been interpreted as 94 

evidence of the misallocation of attention (Hickey & Peelen, 2015, 2017; Barbaro, Peelen, & 95 

Hickey, 2017). The idea here is that the fleeting capture of attention to the distractor is not 96 

reflected in the hemodynamic fMRI signal because of the low temporal accuracy of this 97 

measure. Instead, fMRI indexes the long-lived post-capture suppression of the distractor that 98 

allows attention to be redeployed in search for the target.  99 

These behavioural and imaging results have therefore been interpreted as evidence that 100 

reward-associated naturalistic distractors capture attention, but this clearly rests on a pair of 101 

questionable assumptions. The first is that the behavioural cost of a reward-associated 102 

distractor in naturalistic search necessarily reflects its ability to capture attention; as noted  103 
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 104 

Figure 1 – Examples of scene stimuli. The two left columns contain examples of trees; the two right columns contain 105 
examples of bushes. The rows are organized according to the presence and position of people and cars.  106 

 107 

 108 
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above, the alternative is that these objects are not selected, but nevertheless degrade 109 

behaviour, for example by creating the need for attentional filtering or cognitive control (Folk & 110 

Remington, 1998; Sawaki & Luck, 2010; Gaspelin & Luck, 2019). The second assumption is 111 

that the suppression of reward-associated distractors observed in fMRI is a reaction to 112 

preceding attentional selection; the alternative is that the reward-associated distractor is 113 

suppressed from its first appearance. In the current study, we leverage the temporal precision of 114 

EEG machine-learning classification and ERPs to directly test the idea that attention is captured 115 

to examples of reward-associated distractor categories presented in photographs of real-world 116 

scenes.  117 

 118 

Materials and Methods 119 

We had participants search through photographs of scenes for examples of real-world 120 

categories – cars, people, and plants – and report a characteristic of the target category (Figure 121 

1). When the target category was cars or people, participants reported the facing direction of the 122 

target; when the target was plants, they reported if the scene contained trees or bushes.  123 

For each participant, a single category – always either cars or people – was associated 124 

with reward. In blocks where this category was the cued target, correct performance earned 100 125 

points with cash value (Figure 2a). When any other category was the cued target, correct 126 

performance earned only 1 point (Figure 2b). Critically, when participants were cued to search 127 

for a low-reward target category, the scene could contain an example of the high-reward 128 

category as a task irrelevant distractor (Figure 3). Our core interest lay in these conditions, 129 

where we could isolate the neural response to an example of a non-target object as a function 130 

of its prior reward association.  131 

   132 

 133 

 134 
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 135 

Figure 2 – Trial examples when search is for ‘cars’. A.) In subject group A the high-reward category is ‘cars’, and in 136 
this example the current target of search is ‘cars’. The scene contains an example of the target category; for this 137 
subject group this is a ‘lateral high-reward target’. The task is to report the facing direction of the target, which is left, 138 
and correct response garners high-magnitude reward. B.) In subject group B the high-reward category is ‘people’, but 139 
in this example the current target of search is ‘cars’. The scene contains an example of the target category; for this 140 
subject group this is a ‘lateral low-reward target’. The task is to report the facing direction of the target, which is left, 141 
and correct response garners low-magnitude reward.  142 
  143 
 144 

The scene stimuli employed in the experiment are visually heterogenous, and physical 145 

differences in the images and categories could drive variance in the neural response that might 146 

obscure effects of reward association. The experiment had two key features to control for this.  147 

First, there were two groups of participants: one group associated reward with cars, the other 148 

with people. Second, plants were never associated with reward. Critical conditions were 149 

therefore those where participant groups were cued to search for the same neutral low-reward 150 

category – plants – and the scenes additionally contained a lateral example of either the high-151 

reward distractor category or the low-reward distractor category (or both, with one presented 152 

laterally and the other centrally; see Figures 1 and 3). 153 
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 154 

Figure 3 – Trial examples for the critical conditions when search is for the low-reward category ‘plants’. In group A the 155 
high-reward category is ‘cars’, while in group B the high-reward category is ‘people’. The scenes can contain 156 
examples of people or cars, or examples of both categories concurrently. When people and cars are both present in 157 
the scene, one example is presented laterally and the other centrally. A.) The scene contains an example of the non-158 
target category people. For group A, this scene contains a ‘lateral low-reward distractor’, whereas for group B this 159 
same scene contains a ‘lateral high-reward distractor.’ B.) The scene contains an example of the non-target category 160 
cars. For group A, this scene contains a ‘lateral high-reward distractor’, whereas for group B this same scene 161 
contains a ‘lateral low-reward distractor’. C.) The scene contains a lateral example of the non-target category people 162 
and a central example of the non-target category cars. For group A, this scene contains a ‘lateral low-reward 163 
distractor’ and a ‘central high-reward distractor’. For group B this same scene contains a ‘lateral high-reward 164 
distractor’ and a ‘central low-reward distractor’. D.) The scene contains a lateral example of the non-target category 165 
cars and a central example of the non-target category people. For group A, this scene contains a ‘lateral high-reward 166 
distractor’ and a ‘central low-reward distractor’. For group B, this scene contains a ‘lateral low-reward distractor’ and a 167 
‘central high-reward distractor.’  168 
 169 
 170 
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Critically, by manipulating the reward association across participant groups, we were 171 

able to use the same scenes in each of these experimental conditions. As an example of this, 172 

consider the trial illustrated in Figure 3a. For group A, the high-reward target category is cars, 173 

but in this example the current target category is plants. The scene contains a single example of  174 

a person (alongside examples of the target). For participants in group A, this scene therefore 175 

contains a lateral example of the low-reward distractor category. However, for participants in 176 

group B, this same scene contains a lateral example of the high-reward distractor category. 177 

When results were collapsed across groups, physical differences in the scene stimuli were 178 

counterbalanced across participant groups.  179 

In analysis, we use machine learning of EEG data to measure the quality of encoding 180 

and representation of reward-associated and neutral distractors, subsequently unpacking 181 

classification results through consideration of ERPs. In ERP analysis, our focus lay particularly 182 

on the N2pc (Luck & Hillyard, 1994) and Pd components (Hickey, Di Lollo, & McDonald, 2009) 183 

as indices of attentional selection and suppression, respectively. To foreshadow, classification 184 

and ERP results demonstrate that naturalistic reward-associated distractors are strongly 185 

suppressed from the moment they appear.  186 

 187 

Participants 188 

 Thirty-six healthy volunteers from the University of Birmingham community gave 189 

informed consent before completing the experiment. Each participant reported normal or 190 

corrected-to-normal vision and was paid for participation. Two participants were rejected from 191 

analysis due to poor accuracy in low-reward task conditions (>2.5 SD from the mean), leading 192 

to a final sample of 34. Of these, 3 were left-handed, 10 were men, and mean age was 20 years 193 

(3 years SD).  194 

 195 

 196 
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Stimuli and Procedure 197 

Participants searched through black and white photographs of real-world scenes 198 

(approximately 22° x 17° visual angle) for examples of three different object categories. Figure 1 199 

presents a set of scene examples. The target category changed for each of the 24 experimental 200 

blocks, with each block containing 54 trials, and a cue at the beginning of each block identified 201 

whether cars, people, or plants were the target category for that set of trials. When participants 202 

were cued to search for cars or people, every scene in the block contained a single example of 203 

the target category located at the left, middle, or right of the image. Participants were asked to 204 

report the facing direction of the target – for example, if the car faced the left or the right – via 205 

button press with the left or right hand on a standard computer keyboard. When participants 206 

were cued to search for plants, the scenes contained at least one example of a tree or a bush, 207 

but not examples of both, and these were located anywhere in the scene. Participants reported 208 

whether the scene contained trees or bushes with a corresponding left- or right-hand keyboard 209 

response. The target category for each individual block was selected at random with the 210 

constraint that each category served as target for an equal number of blocks in the experiment. 211 

The scenes could contain examples of the categories not currently acting as target. For 212 

example, when search was for people, the scene could contain examples of cars and plants as 213 

task-irrelevant nontargets. When these distractors were cars or people, only a single  214 

example appeared and was located at the left, middle, or right of the scene. When the 215 

distractors were plants, multiple examples could appear at any location.  216 

When people or cars were the target category, scenes were constrained such that they 217 

contained either a lateral example of the target category, a lateral example of the target 218 

category and a central example of the other localized distractor category, or a lateral example of 219 

the localized distractor category and a central example of the target category (see Figure 1). 220 

Equal numbers of these target lateral, target lateral / distractor central, and distractor lateral / 221 

target central scenes were presented. In each of these layouts, the facing direction of the target 222 
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and the facing direction of the localized distractor were counterbalanced across images within 223 

each category, as was the presence of trees or bushes.  224 

When plants were the target category, scenes were constrained such that they 225 

contained either a lateral example of a car distractor, a lateral example of a car distractor and a 226 

central example of a person distractor, a lateral example of a person distractor, or a lateral  227 

example of a person distractor and a central example of a car distractor. Equal numbers of 228 

these lateral distractor and lateral distractor / central distractor scenes were presented to the  229 

participant and the facing direction of the distractors was counterbalanced across images within 230 

each category. 231 

There were 304 scene images in the stimuli set, most taken from a set of 480 images 232 

employed in an earlier publication (Hickey, Pollicino, Bertazolli, & Barbaro, 2019) with additional 233 

scenes generated using a digital camera. Each core image set (eg. left-located left-facing  234 

car, central right-facing person, bush) had 4 to 8 individual examples. Examples from each core 235 

image set were used in the experiment in random order until all images in the set had been 236 

presented, at which point this process reset in new random order. The scene images were 237 

prepared such that the category example in the periphery was roughly equidistant from fixation 238 

in each image and such that people and vehicles had roughly consistent size across the image 239 

set.  240 

 In each trial, correct response was rewarded with points that had cash value, with the 241 

magnitude of reward varying as a function of target category. For 17 of the participants, correct 242 

responses to car targets resulted in high-magnitude reward (100 points), whereas correct 243 

responses to people or plant targets resulted in low-magnitude reward (1 point). For the 244 

remaining participants, correct responses to people resulted in high-magnitude reward, with 245 

cars and plants associated with low-magnitude reward. The points putatively determined a final 246 

pay range of £18 to £24, and participants were instructed to maximize points and therefore 247 
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earnings, but at the end of the experiment total earnings were rounded to £24 for all 248 

participants.  249 

 The experiment took place in a dimly lit room and participants were seated at 250 

approximately 1 m distance from a 24-inch LED monitor (100 Hz refresh rate). As illustrated in 251 

Figure 2, each experimental block began with a 2 s cue indicating the target category for that 252 

block and a reminder of the high-reward category. Each trial began with presentation of a 253 

fixation cross for 250 to 750 ms (randomly selected from a uniform distribution) followed by 254 

presentation of a scene for 200 ms. The scene was subsequently replaced by a fixation cross 255 

until either the participant responded via keyboard button press or 1750 ms had passed. 256 

Reward feedback was then presented for 1000 ms, after which a new trial began. Feedback 257 

regarding task accuracy and speed was provided at the end of every experimental block and the 258 

session took approximately 2.5 hours, reflecting 1.5 hours of experimental participation and 1 259 

hour of preparation and debriefing. Stimuli presentation relied on PsychToolbox-3 for MATLAB 260 

(Brainard et al., 2008). 261 

 262 

EEG Recording and Pre-processing 263 

EEG was recorded at 1 kHz from 64 Ag/AgCl electrodes mounted in an elastic cap using a 264 

Biosemi Active2 amplifier and ActiView acquisition software. Horizontal electrooculogram (EOG) 265 

was recorded from electrodes 1 cm lateral the left and right external canthi, vertical EOG was 266 

recorded from electrodes place directly above and below the left pupil, and two additional 267 

electrodes recorded voltage over the left and right mastoid processes. Electrode offset was 268 

minimized and stabilized prior to the start of recording. EEG was acquired at DC with a 208 Hz 269 

anti-aliasing filter, resampled offline at 512 Hz, re-referenced to the average of mastoid signals, 270 

and band-pass filtered with a Hamming windowed FIR kernel (0.1 to 45 Hz; -6dB at 0.05 Hz and 271 

45.05 Hz). Epochs beginning 1 s before and ending 2 s after each scene onset were extracted 272 

from the data.  273 
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 274 

 275 

 276 

Figure 4 – Behavioural results from conditions where ‘cars’ or ‘people’ were the target of search. These results are 277 
presented for the sake of completeness; no core hypotheses are tested. In the stylized scene examples employed 278 
here and in subsequent figures high-magnitude reward is associated to ‘cars’, but as described in the body of the 279 
paper this was counter-balanced across participants. A.) Accuracy. As expected, responses to high-reward targets 280 
were more accurate in all conditions. B.) Reaction times. Surprisingly, participants were faster to respond to targets 281 
presented in scenes that also contained an example of the localized distractor. This may reflect a qualitative 282 
difference in the images; scenes containing only one localized category type happened to be characterized by 283 
smaller, harder-to-find target examples. Data collected from presentation of these scenes were not employed to test 284 
the core study hypothesis regarding the capture of attention to reward-associated stimuli.  285 
 286 

Infomax independent component analysis (Bell & Sejnowkski, 1995) was used to identify 287 

variance stemming from ocular artifacts in the epoched data. The independent components 288 

representing horizontal and vertical eye movements were used to identify trials in which eye 289 

movements were made in the 600 ms interval following stimulus onset. Participants moved their  290 

eyes in 6 – 18% of trials and these were removed from further analysis. Components 291 

representing eye and muscle artifacts were subsequently removed from the data, as were trials 292 

resulting in incorrect response, and epoched data was baselined on the 200 ms interval 293 

preceding scene onset. Experimental conditions were subsequently defined based on the  294 
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 295 

 296 
Figure 5 – Results from conditions where participants searched for plants, which were employed to test motivating 297 
experimental hypotheses regarding attentional capture. A.) When participants searched for plants in scenes 298 
containing a single additional distractor, accuracy degraded when that distractor was associated with reward. 299 
However, when the scene contained both a lateral and a central distractor – and therefore always contained 300 
examples of both the high-reward and low-reward distractor categories – accuracy was insensitive to the specific 301 
locations of the 2 distractors. C.) Similar results emerge in reaction times. When participants searched for plants in 302 
scenes containing a single additional distractor, reaction times increased when that distractor was associated with 303 
reward. However, when the scene contained 2 distractors, reaction time was insensitive to the specific location of 304 
these distractors.   305 
 306 

reward association of the target category (reward-associated car / person, neutral car / person, 307 

or neutral plant) and the presence and location of distractor stimuli.  308 

 309 

EEG machine learning classification 310 

Our approach to EEG classification is based on linear discriminant analysis (LDA) and 311 

cross-fold validation. Each classification analysis interrogates a conditional difference, for 312 

example whether a target is located on the left or right of the scene, with the classifier trained to  313 

label data as coming from one of these two classes. In each analysis, conditional EEG is 314 

partitioned into 10 folds, each balanced to contain an equal number of randomly selected, 315 

correctly performed trials from each of the two classes, and a model is built for each  316 
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 317 

Figure 6 – Results from trial-wise EEG classification. In all analyses, the machine learning algorithm is trained to 318 
discriminate between two classes of stimuli and 50% accuracy reflects chance performance. Topographic maps 319 
reflect model decision criteria across reward conditions as measured over the latency intervals identified by grey 320 
shading in the corresponding time-course plots, which is a 40 ms interval centred on peak decoding accuracy 321 
collapsed across conditions. Topographic plots are computed as the mean of spatially z-scored data for each 322 
individual and are therefore in SD units; while the topographical pattern is informative, the underlying values are 323 
uninformative and as such no scale is provided in the figure. Significant classifier accuracy in each condition is 324 
illustrated in the red or blue lines located just above the 50% baseline. a.) Results from classification of target 325 
location. This analysis is intended to demonstrate the efficacy of the method, and to investigate the impact of reward 326 
association on target processing, but does not test the motivating experimental hypothesis regarding the capture of 327 
attention. Analysis does not identify a reliable difference in classification accuracy as a function of target reward 328 
association. b.) Results from classification of distractor location. Location classification improves when the distractor 329 
is associated with reward. c.) Results from classification of whether the distractor was present in the centre of the 330 
scene. Presence classification degrades when the distractor is associated with reward.  331 
 332 
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combination of 9 data folds. The 10 resulting models – each based on a unique combination of 333 

9 of 10 data folds – are subsequently tested against the individual trials contained in the single 334 

fold that did not contribute to model building. There is no trial averaging in our approach, and 335 

classification accuracy is defined as the mean testing accuracy across trials and folds. To 336 

establish a time-course of classification accuracy, we implemented this modelling and validation 337 

procedure for each ~2ms sample point in an epoch beginning 250 ms before the onset of the 338 

scene stimulus and ending 1000 ms after. To ensure model stability and accuracy, models were 339 

built and tested on data spanning a 61-sample interval centred on the datapoint under 340 

consideration (constituting 64 * 61 = 3904 observations of electrode voltage). Each datapoint in 341 

classification analyses thus reflects classification performance across a ~120 ms interval 342 

centred on the datapoint under consideration. This importantly means that the absolute latency 343 

of classification onset should be interpreted with care, as accuracy at a given timepoint reflects 344 

the performance of a model with access to data recorded up to ~60 ms later. In contrast, peak 345 

classification latency and conditional effects on classification latency can be unambiguously 346 

interpreted.  347 

To gain insight on model classification decisions, we extracted model weights in each 348 

model building instance. These were subsequently multiplied by the covariance matrix of the 349 

data that had been used to build the model, with the results mean averaged across model 350 

building iterations and across latency intervals of interest and z- scored within each participant 351 

before being mean averaged across participants. This procedure transforms the backward 352 

model generated by LDA, which projects a data pattern into an expected class membership, into 353 

a forward model, which projects class membership into an expected data pattern (Haufe et al, 354 

2014). The forward model can be topographically plotted to illustrate the classifier decision 355 

criteria (see Figure 6). 356 
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Statistical analysis of classification accuracy relied on threshold-free cluster 357 

enhancement (TFCE; Smith & Nichols, 2009) with clusters defined over time. Conditional 358 

differences in classification accuracy were tested using permutation contrasts with 100k  359 

iterations based on mean accuracy observed in a 40 ms interval centred on the cross-360 

conditional accuracy peak. Statistical analysis of the latency of classification accuracy relied on 361 

a resampling approach. To assess the difference in peak classification latency between 362 

conditions we iteratively resampled from the set of 34 participant datasets 100k times with 363 

replacement. In each iteration, we averaged classification accuracy for the relevant conditions 364 

across the sample, extracted the peak latency for each condition, and calculated the difference 365 

in peak latencies. The probability that an observed difference in peak classification latency 366 

might have been observed under the null hypothesis was reflected in the proportion of the 367 

distribution of difference scores that fell below zero. Classification analyses relied on the 368 

COSMOMVPA (Oosterhof, Connolly, & Haxby, 2016) and ADAM toolboxes (Fahrenfort, Van 369 

Driel, Van Gaal, & Olivers, 2018) and on custom code. 370 

 371 

Event-related potentials 372 

 ERPs were calculated using standard signal-averaging (Luck, 2014). Our focus 373 

was on the N2pc and Pd components of the visual ERP, which index attentional selection and 374 

attentional suppression, respectively, and emerge in visual cortex contralateral to the location of 375 

the eliciting stimulus. To isolate these components from bilateral variance in the ERP, we a.) 376 

extracted voltage recorded at electrodes located over left visual cortex when the eliciting 377 

stimulus was in the right visual field, and averaged this response with b.) voltage recorded at 378 

electrodes located over right visual cortex when the eliciting stimulus was in the left visual field. 379 

This generated a contralateral waveform and a similar procedure was applied to generate 380 

ipsilateral waveforms. Topographic maps of differences in lateralized ERP components are 381 

generated by ‘flipping’ EEG data observed when the eliciting stimulus is in the right visual field  382 
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 383 

 384 

 385 

and averaging with EEG data observed when it is in the left visual field, such that the left cortical 386 

hemisphere consistently represents ipsilateral cortex and the right cortical hemisphere 387 

consistently represents contralateral cortex. 388 

Importantly, when calculated in reference to the objects appearing to the left and right of 389 

fixation, the N2pc and Pd are insensitive to lateralized activity evoked by objects in the center of 390 

the visual field (Woodman & Luck, 2003; Hickey, McDonald, & Theeuwes, 2006; Hickey, Di 391 

Lollo, & McDonald, 2009). For example, consider a display with a central car distractor and a 392 

lateral person target, with the central distractor eliciting theoretical right-lateralized ERP activity. 393 

When the person target is in the left visual field, the car-elicited effect emerges as positivity in 394 

the contralateral signal. But when the person distractor is in the right visual field, the car-elicited 395 

effect emerges as negativity in the contralateral signal. When mean target-elicited contralateral 396 

signal is calculated, the central distractor has no summed effect.  397 

Statistical analysis of ERP component amplitude depended on parametric repeated-398 

measures ANOVA (RANOVA). Lateral ERPs were statistically assessed in two latency intervals: 399 

220 – 280 ms, when the N2pc and Pd are known to emerge with maximum amplitude (Luck & 400 

Hillyard, 1994; Hickey, Di Lollo, & McDonald, 2009), and 100 – 160 ms, when an early  401 

expression of the Pd is known to emerge (Weaver, van Zoest, & Hickey, 2017; Sawaki & Luck, 402 

2010). ERP analysis relied on the EEGLAB toolbox (Delorme & Makeig, 2004) and custom 403 

code. Additional control analyses involving linear mixed models and Bayesian model 404 

comparison are described in the results section and depend on the fitlme.m function 405 

implemented in the MATLAB statistic toolbox (R2021b) and the BayesFactor toolbox 406 

(https://klabhub.github.io/bayesFactor) with default priors.  407 

 408 
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 409 

Figure 7 – Relationship between classification of distractor location and distractor presence across participants. 410 
Statistical analysis reflects permutation analysis with 100k iterations, an approach that is robust to the influence of 411 
outliers.  412 
 413 

Results  414 

Behaviour  415 

Outliers were defined as responses where reaction time (RT) was more than 3 SD from 416 

the participant mean and were rejected from further analysis (1.3% of trials, 0.4% SD). Accuracy 417 

and RT are illustrated in Figures 4 and 5. The results illustrated in Figures 4a and 4b are 418 

presented largely for the sake of completeness as no critical experimental hypotheses are 419 

tested. As expected, participants were more accurate when correct response to the target 420 

garnered high-magnitude reward (Figure 4a). Unexpectedly, they were slower to respond to the 421 

target when the distractor was absent from the scene (Figure 4b).  422 

Results from the critical plant target condition are presented in Figure 5. When a lateral 423 

distractor was present in the scene during search for a plant, the association of reward to the 424 
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distractor decreased accuracy (Figure 5a, left of panel) and increased RT (Figure 5b, left of 425 

panel). When the scene contained both a lateral distractor and a central distractor – and 426 

therefore contained both a reward-associated and a neutral distractor – the specific location of 427 

the reward-associated and neutral distractors did not have an impact on accuracy (Figure 5a, 428 

right of panel) or RT (Figure 5b, right of panel).  429 

Statistical analysis of accuracy in the plant target condition took the form of a RANOVA 430 

with factors for group (cars are reward-associated vs. people are reward-associated), reward 431 

association of lateralized distractor (reward-associated lateral distractor vs. neutral  432 

lateral distractor), and presence of central distractor (central distractor present vs. central 433 

distractor absent). This identified a main effect of distractor reward association (F(1,32) = 18.68, 434 

p < 0.001, η2p = 0.369), reflecting the decrease in accuracy when a reward-associated distractor 435 

was present, and an interaction of distractor reward association and central distractor presence 436 

(F(1,32) = 22.19, p < 0.001, η2p = 0.410), reflecting accentuation of this effect when the central 437 

distractor was absent from the scene. No other effects reached significance (central distractor 438 

presence: F(1,32) = 3.09, p = 0.088; group X distractor reward association: F(1,32) = 2.91, p = 439 

0.098; group X central distractor presence: F(1,32) = 2.66, p = 0.113; 3-way interaction: F(1,32) 440 

= 1.74, p = 0.196; all other Fs < 1).  441 

A similar pattern of results emerged from analysis of RT. A RANOVA with the same 442 

factors identified a main effect of distractor reward association (F(1,32) = 41.30, p < 0.001, η2p = 443 

0.563) and a main effect of central distractor presence (F(1,32) = 94.84, p < 0.001, η2p = 0.747), 444 

alongside an interaction of distractor reward association and central distractor presence (F(1,32) 445 

= 59.12, p < 0.001, η2p = 0.649). No other effects reached significance (group: F(1,32) = 1.73, p 446 

= 0.198; all other Fs < 1).  447 

The critical observation from these behavioural results is that the reward-associated  448 
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distractor decreased accuracy and increased RTs relative to the neutral distractor. As we found 449 

no behavioural differences between the two subject groups, we collapse across this distinction 450 

in subsequent analysis of electrophysiological data. 451 

 452 

EEG classification 453 

As illustrated in Figure 6, we conducted three independent classification analyses of 454 

EEG data. The first was focussed on trials where participants searched for cars or people, 455 

separating these into conditions based on the location of the target (left hemifield vs right 456 

hemifield) and the reward association of the target (reward-associated target vs neutral target). 457 

This analysis did not directly test our motivating hypothesis regarding attentional capture to 458 

distractor stimuli, but it allowed us to characterize how classification of target location emerged 459 

in EEG data and describe the impact of reward association on target processing. Classifiers 460 

were trained to identify the location of the lateral target for each of the reward-associated and 461 

neutral target conditions separately. As presented in Figure 6a, classification accuracy at the 462 

cross-conditional peak (231 – 271 ms) did not reliably differ as a function of the target reward 463 

association (p = 0.440). Accuracy subsequently diverges between conditions, but this difference 464 

did not survive cluster correction for multiple comparisons.  465 

 The topographic map presented in Figure 6a illustrates a forward projection of the 466 

classification model collapsed across reward-associated and neutral target conditions and 467 

averaged over the 231 to 271 ms interval identified by grey shading in the figure. The scalp map 468 

shows a lateral pattern, with the model classifying a trial as containing a target in the left 469 

hemifield when right posterior cortex had more negative voltage, and vice versa. This suggests 470 

that the model is loading on variance that also underlies the N2pc, as has been observed in 471 

earlier classification analysis of EEG from visual search (Fahrenfort, Grubert, Olivers, & Eimer, 472 

2017). Results from this classification analysis appear to reach a ceiling, with reward 473 

association not causing the EEG signal to carry additional information about the target location.  474 
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 475 

 476 

Figure 8 – Target-elicited ERPs in car / person target conditions. In the stylized stimulus examples here and in Figure 477 
7 the reward-associated category is ‘cars’, but this was counter-balanced across participants in the actual 478 
experiment. Note that here and in Figure 7 negative voltage is plotted upward by convention and the ERPs reflect 479 
mean signal observed at the lateral electrode clusters identified by large marker in the topographic maps in Figure 7. 480 
a.) The posterior lateral ERPs elicited by a scene containing a peripheral neutral target. The N2pc is apparent as the 481 
difference between contralateral and ipsilateral waveforms beginning around 200 ms post-stimulus. b.) The ERPs 482 
elicited by a scene containing a peripheral reward-associated target. c.) The ERPs elicited by a scene containing a 483 
peripheral neutral target when a task-irrelevant example of the reward-associated category is present in the centre of 484 
the scene. d.) The ERPs elicited by a scene containing a peripheral reward-associated target when a task-irreelvant 485 
example of the neutral target category is present in the centre of the scene. e.) Contralateral-minus-ipsilateral 486 
difference waves for the ERPs illustrated in panels A and B. The N2pc is reflected in negative deflection of the 487 
difference wave and does not reliably differ as a function of target reward association. f.) Difference waves for the 488 
ERPs illustrated in panels C and D. As in panel E, the N2pc does not reliably differ as a function of target reward 489 
association.  490 
 491 
 492 
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 493 

The second classification analysis is analogous to that described above but focussed on 494 

classification of distractor location and limited to trials where participants searched for plants. 495 

This analysis tests the motivating idea for the study, namely that reward association might 496 

impact neural responses to distractor stimuli indexing attentional selection. As illustrated in 497 

Figure 6b, distractor location classification emerged quickly and showed a marked difference as 498 

a function of whether the distractor category had been associated with reward in prior 499 

experience. Across an interval centred on the cross-conditional classification peak (181 - 221 500 

ms), accuracy was significantly greater when the distractor was taken from the reward-501 

associated stimulus category rather than the neutral stimulus category (p = 0.028). The EEG 502 

signal thus carried more information about the location of the reward-associated distractor than 503 

it did about the location of the neutral distractor.  504 

 At first blush, this pattern is consistent with the idea that attention is captured by 505 

examples of the reward-associated distractor category. This mis-deployment of attention could 506 

cause the EEG signal to carry more information about the distractor location, and this could be 507 

associated with the degradation of overt response to the target. However, consideration of the  508 

topographic maps illustrated in Figures 6a and 6b identifies an inconsistency in this account. 509 

The forward projection of the classification model for distractor localization shows that the model 510 

classified a trial as containing a distractor in the left visual hemifield when signal over right 511 

posterior cortex had voltage more positive than that over left posterior cortex, and vice versa. 512 

This contrasts with results from classification of target location, where contralateral negativity, 513 

not positivity, contributed to the model decision.  514 

 To probe this disparity, we conducted an additional analysis to classify whether a scene 515 

contained a central distractor. This was again based on data collected while participants 516 

searched for plants, but rather than classifying distractor location, the model labelled trials as 517 

either containing a distractor in the centre of the photograph, or not. As illustrated in Figure 6c,  518 
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 519 

 520 

 521 
Figure 9 – Distractor-elicited ERPs in plant target conditions. a.) The posterior lateral ERPs elicited by a scene 522 
containing a peripheral neutral distractor. b.) The ERPs elicited by a scene containing a peripheral reward-associated 523 
distractor. c.) The ERPs elicited by a scene containing a peripheral neutral distractor when a reward-associated 524 
distractor is present in the centre of the scene. d.) The ERPs elicited by a scene containing a peripheral reward-525 
associated distractor when a neutral distractor is present in the centre of the scene. e.) Contralateral-minus-ipsilateral 526 
difference waves for the ERPs illustrated in panels A and B. The N2pc is reflected in negative deflection of the 527 
difference wave and the PD is reflected in positive deflection. f.) Difference waves for the ERPs illustrated in panels C 528 
and D. Topographic maps reflect the conditional difference in voltage observed in the intervals identified by grey 529 
shading in the difference waves.  530 

 531 
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the machine learning algorithm was able to perform this task well, with cross-conditional peak 534 

decoding accuracy emerging at 176 ms. Topographic projection of the forward model suggests 535 

that the classification decision depended on emergence of brain activity in both visual cortex 536 

and frontocentral cortex. Classification accuracy was better when the central distractor had 537 

been previously associated with neutral outcome than with reward outcome (156 – 196 ms 538 

interval; p = 0.025).  539 

 There is the possibility that distractor location classification and distractor presence 540 

classification are related to one another. That is, the contralateral positivity that emerges in 541 

classification of distractor location might reflect activation of a mechanism in visual cortex that 542 

also emerges when a distractor is present in the center of the scene. Consistent with this, 543 

classification of distractor presence appears to depend on bilateral posterior positivity (Figure 544 

6c). However, reward association has a positive impact on distractor location classification, but 545 

a negative effect on distractor presence classification, and this pattern is hard to explain if 546 

classification in both instances is associated with the same EEG variance.  547 

 An alternative account for this pattern – better classification of the location of a reward-548 

associated distractor, but poorer identification of the presence of a reward-associated distractor  549 

– is that the reward-associated distractor is suppressed in the post-stimulus interval. Under this 550 

premise, classification of the reward-associated distractor is more accurate because this 551 

stimulus triggers a response in contralateral visual cortex – a Pd – that acts to inhibit encoding 552 

of this stimulus. The machine learning algorithm uses this index of visual suppression to infer 553 

distractor location, but separate classification of stimulus presence is poor because this 554 

suppression leads to a degraded encoding of the stimulus and its associated category. 555 

We conducted two additional analyses of classification accuracy to further test this 556 

interpretation. In the first, we examined the latency of peak decoding accuracy for distractor 557 

location and distractor presence separately for reward-associated and neutral distractors. Peak 558 

classification of the presence of a reward-associated distractor emerged at roughly the same 559 
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latency as peak classification of the location of a reward-associated distractor (209 ms vs 195 560 

ms; -14 ms difference). However, peak classification of the presence of a neutral distractor 561 

preceded peak classification of its location (176 ms vs 264 ms; 89 ms difference). Resampling 562 

statistics based on these difference scores suggested that the difference in latencies observed 563 

for the neutral distractor reliably differed from those observed for the reward-associated 564 

distractor (p = 0.038), with follow-up contrasts failing to identify a latency difference between 565 

location classification and presence classification for reward-associated distractors (p = 0.276) 566 

but identifying a marginal trend for neutral distractors (p = 0.061). This suggests that the EEG 567 

signal may carry information about the presence of the neutral distractor that precedes 568 

information about its location, consistent with classic theoretical perspectives proposing that 569 

diagnostic feature information is extracted from visual input before being localized (Treisman & 570 

Gelade, 1980; Wolfe, Cave, & Franzel, 1989). This does not occur for the reward-associated 571 

distractor, in line with the idea that brain activity underlying location classification leads to a 572 

degraded representation of the distractor, and therefore poorer classification of object presence. 573 

 In the second analysis, we tested the relationship between the effect of reward on 574 

distractor location classification and presence classification. If the EEG variance that supports 575 

location classification causes poor classification of distractor presence, there should be a 576 

negative relationship between these effects across the experimental sample. To this end, we 577 

extracted average location and presence classification accuracy across a 100 – 300 ms latency 578 

range for each of the high-reward and low-reward conditions for each of the 34 participants. 579 

This interval includes latencies where mechanisms of target processing and distractor 580 

suppression are known the emerge in the EEG and ERP (Luck & Hillyard, 1994; Hickey, Di 581 

Lollo, & McDonald, 2009; Weaver, van Zoest, & Hickey, 2017). As illustrated in Figure 7, as 582 

classification accuracy for high-reward distractors increased across individuals (relative to low-583 

reward distractors), presence classification decreased (relative to low-reward distractors).  584 

 585 
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ERPs 586 

Classification of target location appears to rely on emergence of contralateral negativity 587 

in posterior cortex, suggesting it is driven by variance underlying the N2pc, whereas 588 

classification of distractor location appears to rely on emergence of contralateral positivity, 589 

suggesting it is driven by the Pd. However, results from classification leave some ambiguity 590 

regarding the contribution of these posterior effects to classification. It is particularly unclear if 591 

the difference in distractor location classification as a function of reward association is driven by 592 

the Pd or other sources of variance in the EEG signal. 593 

To address this ambiguity, and to generally unpack the classification results, we 594 

extracted ERPs from the experimental data and isolated the N2pc and Pd components. Figure 8 595 

illustrates ERP results when the target of search was a car or person and the target appeared at 596 

a lateral location. These analyses do not test our core motivating hypothesis regarding the 597 

capture of attention to reward-associated distractors, but, as with classification of target location, 598 

allows us to additionally characterize how reward association impacted target processing and to 599 

identify the relationship between ERP results and classification. Lateral waveforms are 600 

presented in Figures 8A through 8D, and contralateral-minus-ipsilateral difference waves are 601 

presented in Figures 8E and 8F. When the lateral target was presented without a central 602 

distractor, it elicited a robust N2pc that did not reliably vary as a function of the manipulation of 603 

reward outcome (Figure 8E). A smaller N2pc was elicited by the lateral target when a central 604 

distractor was present in the scene, reflecting the distracting effect of a prominent foreground 605 

non-target at fixation, but, again, the N2pc did not show a reliable effect of target reward 606 

association (Figure 8F). The N2pc results are thus very similar to the pattern observed in 607 

classification accuracy (Figure 4A). In line with this, the N2pc elicited by a lateral target reliably 608 

correlates with target location classification across participants (mean 200 – 300 ms, r = 0.273, 609 

p = 0.028, permutation test with 100k iterations).  610 
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To statistically assess the pattern of results in target-elicited N2pc, we conducted a 611 

RANOVA based on mean ERP amplitude from 220 – 280 ms, a latency interval where the N2pc 612 

is known to be maximal (Luck & Hillyard, 1994) and where it emerged prominently in the current 613 

data. The RANOVA had factors for electrode laterality (ipsilateral vs contralateral), target reward  614 

association (reward vs neutral), and central distractor presence (present vs absent), and 615 

identified main effects of electrode laterality (F(1,33) = 73.74, p < 0.001, η2p = 0.691), reflecting 616 

consistent emergence of N2pc across conditions, and central distractor presence (F(1,33) = 617 

5.15, p = 0.030, η2p = 0.135), reflecting a positive shift in the bilateral ERP when the distractor 618 

was present. Electrode laterality interacted with distractor presence (F(1,33) = 33.49, p < 0.001, 619 

η2p = 0.504), reflecting the increase in N2pc amplitude in the distractor absent condition, but no 620 

other interactions emerged (reward X distractor presence: F(1,33) = 1.34, p = 0.255; all other Fs 621 

< 1).  622 

 Figure 9 illustrates ERP results when search was for plants and a reward-associated or 623 

neutral distractor appeared at a lateral location. Results from these critical experimental 624 

conditions directly address motivating hypotheses regarding the capture of attention to reward-625 

related distractors. Lateral waveforms are presented in Figures 9A through 9D, and 626 

contralateral-minus-ipsilateral difference waves are presented in Figures 9E and 9F. When the 627 

lateral distractor appeared without a central distractor it elicited a lateral response that had both 628 

positive and negative components (Figure 9E). This may reflect the imbalance in sensory 629 

energy in these scenes; the lateral distractor is a prominent foreground object in these 630 

photographs without a corresponding object in the contralateral field, and this imbalance in 631 

sensory stimulation may have elicited contralateral activity in visual cortex linked to sensory and 632 

perceptual processing unrelated to the deployment of attention. The important observation is 633 

that the lateral ERP consistently has more positive polarity in the latency of N2pc and Pd when 634 

the eliciting distractor has been associated with reward. This is the case both when the scene 635 

contains a central distractor (Figure 9F) and when it does not (Figure 9E). This relative positivity 636 
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in the lateral ERP suggests that selection of the reward-associated distractor was degraded, 637 

relative to selection of the neutral distractor.  638 

We statistically assessed this pattern in two latency intervals: 100 – 160 ms, which 639 

corresponds to the interval when early Pd emerges (Weaver, van Zoest, & Hickey, 2017; 640 

Sawaki & Luck, 2010), and 220 – 280 ms, when the N2pc and Pd are maximal (Luck & Hillyard, 641 

1994; Hickey, Di Lollo, & McDonald, 2009). In both cases, RANOVA analysis had factors for 642 

electrode laterality (ipsilateral vs contralateral), distractor reward association (reward vs neutral), 643 

and central distractor presence (present vs absent). Results from the early latency period 644 

identify a single main effect of distractor presence (F(1,33) = 11.65, p = 0.002, η2p = 0.261) 645 

alongside an interaction of electrode laterality and distractor reward association (F(1,33) = 4.32, 646 

p = 0.046, η2p = 0.116), reflecting the positive shift in the lateral waveform elicited by a reward-647 

associated distractor, and an interaction of electrode laterality and distractor presence (F(1,33) 648 

= 15.48, p < 0.001, η2p = 0.319), reflecting the negative shift in the lateral waveform when the 649 

central distractor was present (electrode laterality: F(1,33) = 3.80, p = 0.060; reward: F(1,33) = 650 

1.84, p = 0.184; all other Fs < 1). Much the same pattern emerged in analysis of the later time 651 

window, with a main effect of electrode location (F(1,33) = 4.13, p = 0.050, η2p = 0.111), an 652 

interaction of electrode location and reward (F(1,33) = 6.23, p = 0.018, η2p = 0.159), an 653 

interaction of electrode location and distractor presence (F(1,33) = 13.43, p < 0.001, η2p = 654 

0.289), but no other effects (reward: F(1,33) = 2.13, p = 0.154; distractor presence: F(1,33) = 655 

2.33, p = 0.134; all other Fs < 1). To relate these ERP effects to classification, we extracted the 656 

contralateral signal in the distractor-elicited ERP, collapsing across reward conditions but 657 

focussing on the 100 – 300 ms interval where these effects emerged. Increase in positivity in 658 

the ERP in this interval reliably predicted an increase in distractor location classification 659 

accuracy across individuals (r = 0.304, p = 0.036, permutation test with 100k iterations). This 660 

supports the notion that distractor location classification loads on the Pd, as suggested above.  661 
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One possibility is that the accentuated suppression of high-reward distractors we identify 662 

in Figure 9 is a reaction to the deployment of attention to the reward-associated distractor. 663 

However, this hypothesis – deployment of attention to the distractor followed by distractor 664 

suppression – should express as an initial contralateral negativity followed by a contralateral 665 

positivity (eg. Sawaki & Luck, 2013; Hickey, McDonald, & Theeuwes, 2006). Instead, lateral 666 

positivity emerges very quickly, approximately 40 ms after afferent activity reaches visual cortex, 667 

leaving little opportunity for preceding cognitive operations.  668 

Another possibility is that the reward-associated distractor may initially draw attention 669 

within each block, but that participants learn to rapidly suppress this object as they gain 670 

experience, either strategically or through the influence of implicit statistical learning (Ferrante, 671 

Patacca, Di Caro, Della Libera, Santandrea, & Chelazzi, 2018; Ferrante, Zhigalov, Hickey, & 672 

Jensen, 2023). This predicts that the difference in lateral response to neutral and reward-673 

associated distractors should change over the 54 trials in a block. In the extreme case, the 674 

reward-associated distractor could initially elicit a contralateral negativity – indicative of 675 

attentional capture – but later a contralateral positivity, reflecting the establishment of inhibitory 676 

control.  677 

To test this, we used linear modelling and Bayesian model comparison to assess the 678 

impact of trial position within an experimental block. We split observations from each block of 679 

trials into two sets, one describing observations from the first half of a block and the other 680 

describing those from the second half of a block. If the difference in lateral ERP elicited by 681 

reward-associated versus neutral distractors changes over the course of an experimental block,  682 

this should emerge as a 3-way interaction of electrode location (ipsilateral vs contralateral), 683 

distractor reward association (reward vs neutral), and block position (first half of block vs second  684 

half of block). To measure the impact of this 3-way interaction, we repeatedly built mixed linear 685 

models for each of the two latency intervals of interest. An initial full model included a random 686 

intercept for each experimental participant and fixed factors for reward, distractor presence, 687 



 

32 

electrode location, block position, and all possible interactions between these factors. A 688 

restricted model included all these factors, except for the interaction of electrode location, 689 

reward, and block position. Bayesian statistics were used to compare the full and restricted 690 

models, generating Bayes factor values for each of 1000 iterated model instances that were 691 

subsequently mean averaged. Results from analysis of the early latency interval (100 - 160 ms) 692 

revealed moderate to strong evidence in favour of the null hypothesis of statistical equivalence 693 

of the full and restricted models (average BF = 0.127), and analysis of the late interval 694 

generated similar results (220 - 280 ms; average BF = 0.140). The difference in lateral response 695 

to reward-associated and neutral distractors - statistically expressed in the interaction of 696 

electrode position and reward - therefore appears insensitive to the position of a trial within an 697 

experimental block. This suggests that the stimulus-driven suppression indexed in Pd emerges 698 

quickly and does not require extended experience of the distractor category. 699 

 700 

Discussion 701 

We tested the idea that examples of a reward-associated object category capture attention 702 

during search through photographs of real-world scenes. Participants searched for examples of 703 

a cued target category – cars, trees, or people – while we recorded electrical brain activity. 704 

Importantly, the scenes contained examples of the non-target object categories as task 705 

irrelevant distractors. One of the 3 object categories was associated with financial reward, and 706 

our interest lay in conditions where search was for a neutral target, but the scene happened to 707 

contain an example of the reward-associated category as a task-irrelevant distractor. 708 

Behavioural analysis show that participants were slower and less accurate to respond to the 709 

target in this circumstance, compared to when the scene contained a neutral distractor. This 710 

behavioural pattern has two possible explanations: attention may be captured to the reward-711 

associated distractor, or the reward-associated distractor may create filtering costs and the 712 

need for cognitive control. Results from EEG unambiguously show that the behavioural effect is 713 
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not a reflection of attentional capture. Instead, it appears that the reward-associated distractor is 714 

suppressed almost immediately after the scene appears. This suppression is indexed in a shift 715 

in distractor-evoked brain activity toward contralateral positivity, indicative of emergence of the 716 

Pd component of the visual ERP (Hickey, Di Lollo, & McDonald, 2009; van Zoest, Huber, 717 

Weaver, & Hickey, 2021), and in degraded accuracy of machine learning classification of 718 

distractor presence.  719 

 These results contrast with those from existing EEG and MEG studies employing 720 

synthetic visual search arrays, where reward-associated distractors appear to robustly capture 721 

attention. For example, Hickey, Chelazzi, and Theeuwes (2010) had participants search for a 722 

uniquely shaped target in an array of distractors, one of which had unique color. When selection 723 

of the target resulted in high magnitude reward, and the target and salient distractor colors 724 

subsequently swapped between trials, the distractor captured attention and elicited a robust 725 

N2pc. Similarly, Qi et al., (2013) employed a training paradigm to associate reward to a color. 726 

When the task changed, and color was rendered task irrelevant, distractors characterized by the 727 

reward-associated color continued to capture attention and elicit an N2pc. In these and other 728 

studies, reward appears to impact the representation of the task-irrelevant target-characterizing 729 

feature such that stimuli with this feature capture attention. 730 

Why do reward-associated synthetic distractors capture attention, but reward-associated 731 

naturalistic distractors do not? One important observation is that the locus of learning differs 732 

across these two contexts. In the studies of synthetic visual search described above, learning 733 

presumably involves relatively early visual cortex where low-level features are represented. In 734 

studies of naturalistic vision, by contrast, reward is associated to a visually heterogenous 735 

category of real-world objects where category membership is not predicted by the presence of 736 

specific low-level visual features, and learning impacts encoding in ventral visual cortex, where 737 

mid-level features and visual semantics are represented (eg. Hickey & Peelen, 2015, 2017). 738 

The association of reward to low-level features may lead to quicker and stronger effects on 739 
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visual resolution. A second, related observation is that the simplified context of synthetic visual 740 

search may provide a better opportunity for incentive salience to cause attentional capture. 741 

Relative to naturalistic environments, synthetic search arrays contain only a small set of objects 742 

that are characterized by a limited set of non-overlapping visual features. Reward-associated 743 

objects may become particularly prominent in this impoverished setting in a way that does not 744 

occur in the richer and more complicated context of real-world scenes. Finally, there is the 745 

possibility that these differences of perceptual complexity may impact how attentional 746 

mechanisms are recruited during search. It may be that the rapid suppression we observe here 747 

is only strategically recruited when the visual field contains perceptually complex information 748 

with strong competition for limited resources. In line with this, results have shown that reward-749 

associated synthetic distractors are also suppressed in early visual cortex, but only when 750 

perceptual competition is high (Gong, Jia, & Li, 2017).  751 

 The idea that reward-associated naturalistic distractors draw attention, but do not 752 

necessarily capture it, is broadly in line with a deep literature in visual cognition centred on the 753 

idea of signal suppression (eg. Folk & Remington, 1998; Leber & Egeth, 2006; Gaspar & 754 

McDonald, 2014; Sawaki & Luck, 2010; see Gaspelin & Luck, 2018, for review). The key 755 

proposal here is that salient stimuli may elicit representation in ‘salience maps’, but that signal at 756 

this stage of visual processing can be suppressed so that it does not impact the ‘priority maps’ 757 

that ultimately determine how attention is deployed. For example, in Sawaki and Luck (2010) 758 

participants searched through arrays of letters for a target defined by combination of size and 759 

character. One of the non-target letters was rendered salient by unique color and results 760 

showed that these distractors elicited a prominent Pd component in the ERP, reflecting 761 

suppression. As in the current study, this Pd emerged from very soon after stimulus onset, 762 

leaving little opportunity for preceding attentional operations. The authors suggested that the 763 

salient distractor elicited a salience signal that drew attention to its location. However, because 764 

participants knew this salience signal would only identify task-irrelevant stimuli, they strategically 765 
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inhibited this signal so that the underlying stimulus did not gain selective control (cf. Bacon & 766 

Egeth, 1994; see also Sawaki, Geng, & Luck, 2012; Stillwell, Egeth, & Gaspelin, 2022; Drisdelle 767 

& Eimer, 2021). The current results suggest that this signal suppression hypothesis can be 768 

broadened to describe visual processing of stimuli rendered attention-drawing through reward 769 

association. In critical conditions, participants knew that stimuli characterized by incentive 770 

salience were task irrelevant. They appear to have been able to establish control through 771 

suppression, stopping the deployment of spatial attention and limiting the encoding of 772 

information about the task-irrelevant object.  773 

If the distractor is suppressed, why is its presence associated with a behavioural cost? 774 

Some studies of synthetic visual search find that emergence of distractor suppression is 775 

associated with an elimination of behavioural distractor costs (eg. Sawaki & Luck, 2010; 776 

Gaspelin & Luck, 2018). However, it is more common to find that distractor suppression reduces 777 

distractor costs but does not eliminate them (eg. Burra & Kerzel, 2014; Gaspar & McDonald, 778 

2014; Jannati, Gaspar, & McDonald, 2013; Kiss, Grubert, Petersen, & Eimer, 2012). One 779 

account for this pattern is that the stimulus-triggered distractor suppression is inefficient. Models 780 

of visual attention suggest that the primary purpose of attentional suppression is to shelter 781 

neural representations of attended stimuli, limiting interference during the transformation of 782 

target information to decisions and behaviour (eg. Desimone & Duncan, 1998; Luck et al., 1997; 783 

Tsotsos et al., 1995). If stimulus-triggered suppression is delayed or inefficient, distractors may 784 

still interfere with ongoing cognition, though to a lesser degree. A complementary possibility is 785 

that residual distractor costs may not reflect interference at all, but rather the cognitive load of 786 

stimulus-triggered suppression. By this, effective implementation of stimulus-triggered distractor 787 

suppression, which must occur quickly following stimulus onset, may take time and resources, 788 

delaying or diminishing the deployment of attention to the target and in this way impacting the 789 

speed and accuracy of response (Treisman, Kahneman, & Burkell, 1983; Folk & Remington, 790 

1998).  791 
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To date, the body of neuroscientific literature examining incentive salience in naturalistic 792 

visual search has largely relied on fMRI, showing that information about reward-associated 793 

distractor categories is degraded in ventral visual cortex (Hickey & Peelen, 2015, 2017; 794 

Barbaro, Peelen, & Hickey, 2017; Seidl, Peelen, & Kastner, 2012). This has been counter-795 

intuitively interpreted as evidence of the capture of attention to these stimuli. The logic here is 796 

that capture will be quick and followed by longer-lived suppression of the distractor to allow 797 

search for the target to continue. The notoriously poor temporal resolution of fMRI means that 798 

any accentuation of distractor information due to capture is subsumed by the subsequent 799 

suppression, and thus that the suppression can be interpreted as a proxy index of capture. The 800 

current results challenge this account by showing that the reward-associate distractor is 801 

suppressed very quickly in the post-stimulus interval, leaving little opportunity for prior selection. 802 

It is important to point out that, even within this new interpretation, evidence of suppression – 803 

here in the EEG signal, there in the fMRI signal - remains a valid index of the existence and 804 

strength of incentive salience. Naturalistic visual objects imbued with incentive salience are 805 

attention drawing and need to be strategically suppressed if they are not to be selected.  806 

Incentive salience is thought to be of key importance to human addictive behaviour 807 

(Robinson & Berridge, 2008). Direct drug stimulation of the midbrain dopamine system is 808 

thought to lead to the attribution of incentive salience to drug-related objects and environments. 809 

When these objects and environments are encountered in the future, they become difficult to 810 

ignore and, once noticed, induce craving and drug-seeking behaviour. In line with this, many 811 

studies have reported that task-irrelevant, drug-related stimuli interfere with task-relevant 812 

behaviour (see Field & Cox, 2008, for review). However, metanalysis suggests that the 813 

relationship between drug craving and attentional bias is not strong (Field, Munafò, & Franken, 814 

2009) and the clinical relevance of attentional bias in addictive behaviour is the subject of 815 

continuing debate (eg. Christiansen, Schoenmakers, & Field, 2015). This may reflect the 816 

mediating influence of strategic attentional control on drug-induced attentional bias. If attentional 817 
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bias to drug-related stimuli can be reduced through strategic attentional control, drug-related 818 

stimuli may be suppressed rather than selected (Garavan & Hester, 2007). This idea is 819 

consistent with the broad notion that addictive behaviour is closely linked to reduced activity in 820 

inhibitory prefrontal brain regions (Goldstein & Volkow, 2011). It is also consistent with recent 821 

results from studies of attentional bias in restrained eating. Though results in the eating 822 

literature vary, some studies show that task-irrelevant images of high-caloric foods interfere with 823 

strategic behaviour more strongly in un-restrained eaters than in restrained eaters, suggesting 824 

that restrained eaters strategically suppress processing of the food stimuli (Forestell, Lau, 825 

Gyuvorski, Dickter, & Haque, 2012;  Veenstra, de Jong, Koster, & Roefs, 2010; Werthamm, 826 

Jansen, & Roefs, 2016; though see Meule, Vögele, & Kübler, 2012; Neimeijer, de Jong, & 827 

Roefs, 2012; see Werthamm, Jansen, & Roefs, 2015, for review). A core puzzle in our 828 

understanding of addiction and eating disorders is that the same experiences and context can 829 

lead to dire disorder in one individual, but leave another unscathed, and there is clear 830 

opportunity for research on the strategic attentional control of incentive salience in mediating 831 

these outcomes.  832 

To conclude, we demonstrate that prior reward association can cause examples of a 833 

category or real-world objects to become salient and attention-drawing. However, these objects 834 

do not necessarily capture attention. Participants can establish strategic attentional control over 835 

these stimuli, suppressing their representation without the preceding allocation of attention to 836 

their location. This neural mechanism for control over incentive salience appears to support 837 

adaptive, strategic information-gathering in the natural environment.  838 
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