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a b s t r a c t

In daily life, attention is often directed to high-level object attributes, such as when we look

out for cars before crossing a road. Previous work used MEG decoding to investigate the

influence of such category-based attention on the time course of object category repre-

sentations. Attended object categories were more strongly represented than unattended

categories from 180 msec after scene onset. In the present study, we used a similar

approach to determine when attention is spatially focused on the target. Participants

completed two tasks. In the first, they detected cars and people at varying locations in

photographs of real-world scenes. In the second, they detected a cross that appeared at

salient locations in an array of lines. Multivariate classifiers were trained on data of the

artificial salience experiment and tested on data of the naturalistic visual search experi-

ment. Results showed that the location of both target and distracter objects could be

accurately decoded shortly after scene onset (50 msec). However, the emergence of spatial

attentional selection e reflected in better decoding of target location than distracter loca-

tion e emerged only later in time (240 msec). Target presence itself (irrespective of location

and category) could be decoded from 180 msec after stimulus onset. Combined with earlier

work, these results suggest that naturalistic category search operates through an initial

spatially-global modulation of category processing that then guides attention to the loca-

tion of the target.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Top-down attentional selection serves to deal effectively with

the large amount of visual information present in everyday
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environments. It does this by prioritizing processing of goal-

relevant stimuli (e.g., cars when crossing a road) and

ignoring goal-irrelevant stimuli (e.g., trees when crossing a

road). To study this top-down selection mechanism in the

laboratory, many studies have used the visual search
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paradigm, in which participants are instructed to find simple

stimuli, such as oriented bars or colored circles, amongst a

variety of distracters (Wolfe & Horowitz, 2004). The use of

these artificial displays allows for careful control over vari-

ables such as the specific position of targets and distracters

and the features that distinguish the target from the dis-

tracters. This approach has been fruitfully used in M/EEG

studies to reveal the temporal evolution of attentional selec-

tion in a variety of visual search paradigms. One of the find-

ings from these studies is that the selection of a peripheral

target presented among distracters evokes lateralized re-

sponses over occipitotemporal and parietal areas, peaking

around 200e300 msec after stimulus onset (Eimer, 1996;

Hickey, Di Lollo, & McDonald, 2009; Hopf et al., 2000; Luck &

Hillyard, 1994).

However, visual search in simplified displays differs in

many ways from visual search in real life. For example,

naturalistic search is typically for a familiar object or object

category (e.g., “cars”) rather than a visual feature. These target

objects appear in scenes that are usually cluttered with a va-

riety of distracters that share many low-level features with

the target. Furthermore, the visual properties of target and

distracter objects in real-world scenes vary as a function of

lighting, perspective, occlusion, and distance.

Despite the apparent complexity of naturalistic search,

search in natural scenes is surprisingly efficient (Thorpe,

Fize, & Marlot, 1996; Wolfe, Vo, Evans, & Greene, 2011).
Fig. 1 e Experimental paradigms. Schematics of paradigms used

salience experiment. Example stimuli of (c) the naturalistic visu

experiment.
There are several reasons for this efficiency. For example,

real-world scenes provide a rich visual context that provides

information about likely target features (e.g., objects that are

far away appear smaller) and likely target locations (e.g., cars

appear on roads). Furthermore, objects in natural scenes are

positioned in regular configurations, allowing for the

grouping of objects into meaningful chunks (Kaiser, Stein, &

Peelen, 2014). The many differences between artificial and

naturalistic visual search highlights the importance of

examining the temporal evolution of attentional selection in

naturalistic conditions.

A recent magneto-encephalography (MEG) study from our

group (Kaiser, Oosterhof, & Peelen, 2016) took this approach,

investigating the time course of object category processing in

natural scenes as a function of task relevance. In this study,

participants detected either cars or people in a large set of

natural scenes. Importantly, the same set of scenes was

shown in both tasks, such that objects (cars, people) appeared

both as targets and as distracters. Data were analyzed using

multivariate pattern analysis (MVPA), decoding the processing

of within-scene objects using a classifier trained on data from

a separate experiment in which isolated exemplars of cars

and people were shown.

Averaged across conditions, the category of the objects

present in scenes could be decoded from around 180 msec

after stimulus onset. Crucially, this early stage of decoding

fully depended on the behavioral relevance of the object: early
in (a) naturalistic visual search experiment and (b) physical

al search experiment and (d) the physical salience
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decoding was only possible when the object was the target of

the search. These findings show that top-down attention

quickly modulates the processing of object category, at

around the time that object categories are first being extracted

from scenes. However, unlike earlier M/EEG studies investi-

gating attention in simplified displays, the study by Kaiser

et al. was not designed to provide information about the

spatial component of attentional selection.

In the present study, we closely followed the approach of

Kaiser et al. but with significant changes that allowed for

measurement of the spatial component of attentional se-

lection. First, targets (cars, people) were presented either in

the left or right hemifield so as to elicit lateralized process-

ing. Second, our procedure included an independent exper-

iment in which participants performed a simple detection

task in an artificial, non-naturalistic display, reporting the

presence of a cross in the left or right hemifield (Fig. 1). We

used data from this experiment to train a multivariate clas-

sifier to categorize the deployment of spatial attention to the

left or right with high temporal resolution. We subsequently

used this classifier to detect the deployment of attention to

the left or right in data from the main experiment in which

participants detected examples of real-world objects in

natural scenes.

The objects in the scenes varied as a function of behavioral

relevance, allowing us to determine when the location of

targets was better decoded than the location of distracters.

Importantly, because participants were cued to search for

either cars or people in each trial, the same scene stimuli

appeared in both target-present and target-absent trials,

allowing us to examine neural activity elicited by identical

stimuli as a function of whether they currently served as

target or nontarget. To exclude the contribution of low-level

visual priming, the attended category was symbolically

cued, varied on a trial-by-trial basis rather than in blocks, and

scenes did not repeat across trials. The cross-decoding

approach furthermore allowed us to exclude the contribu-

tion of unintended confounds present in natural scenes and

thus to relate the deployment of attention to naturalistic

stimuli with the deployment of attention to carefully

controlled artificial stimuli.

Our findings show that spatial attention is deployed to the

target (relative to the distracter) from around 240 msec after

stimulus onset. Interestingly, information about target pres-

ence itself was available from 180 msec after stimulus onset,

at the same time as the category-based modulation observed

by Kaiser et al. (2016). These results suggest that spatial

attention follows category-based attention during naturalistic

visual search.
2. Materials and methods

2.1. Participants

Data were acquired from 42 healthy participants with

normal or corrected-to-normal vision (19 male, mean age

M ¼ 26.36 years, SD ¼ 3.75 years). All participants gave

informed consent and received monetary compensation.
The experiment was conducted in accordance with the

Declaration of Helsinki and approved by the Ethical Com-

mittee of the University of Trento. Because of a technical

problem, no behavioral data was collected for the first three

participants.

2.2. General experimental procedure

While recording MEG data, participants performed two ex-

periments: a naturalistic visual search experiment in which

they detected cars, people or trees in naturalistic scenes

(Fig. 1a,c), and a physical salience experiment where they

detected the presence of a cross that was made physically

salient by converging line elements (Fig. 1b,d). The physical

salience experiment was designed to isolate location-specific

brain activity patterns, which were used as the training

dataset for multivariate classifiers (see below). The full

experimental session lasted 80 min. Stimuli were back-

projected onto a translucent screen located 115 cm from the

participants. Stimulus presentation was controlled using

Matlab 8.0 and the Psychtoolbox (Kleiner, Brainard, & Pelli,

2007).

2.3. Naturalistic visual search experiment

In the naturalistic visual search experiment participants

reported the presence or absence of a cued target category

(cars, people, or trees) in briefly presented photographs of

natural scenes by pressing one of two buttons as soon as they

detected the target. Participants performed 12 blocks of 48

trials each. The mapping of button to target presence and

absence was counterbalanced across participants. As illus-

trated in Fig. 1a, a letter cue (500 msec) displayed at the

beginning of every trial indicated the target category (for

English-speakers “C” indicated “car”, “P” “person” and “T”

“tree”; for Italian-speakers, “M” indicated “macchina”, “P”

“persona” and “A” “albero”). After a fixation interval (a “plus”

symbol; 1500 msec), a natural scene was presented briefly

(50 msec), and followed by a perceptual mask (650 msec).

After an additional fixation interval (500 msec), participants

received feedback (displayed for 500 msec) consisting of 1 or

100 points for correct performance and 0 points for incorrect

performance (points were converted to money at the end of

the experiment). Trials were separated by a randomly jit-

tered inter-trial interval (rectangular distribution;

1000 msece2000 msec). The average trial duration was 5.2s.

The reward feedback manipulation (1 or 100 points) was

employed to test a question regarding the effect of reward

association on the processing of objects when these appear

as distracters. The relevant trials in this context were those

where participants searched for trees; these trials are not

analyzed or further treated in the current paper. The trials of

current interest were those in which participants were cued

to detect either cars or people in photographs of real-world

scenes that could include one or more exemplars of cars

and people (Fig. 1c). Ninety-six scenes contained either cars

or people, located on the left or right of the scene. An addi-

tional 48 scenes contained both categories (cars and people),

where in 24 scenes the two categories appeared on the same

https://doi.org/10.1016/j.cortex.2018.11.018
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Fig. 2 e Analysis procedure. Using a cross-decoding approach (a), multivariate classifiers were trained on data from the

salience experiment and tested on data from the naturalistic visual search experiment. Classifier testing was performed

separately for target and distracter locations (b). Note that the same scenes could appear as target or as distracter, with the

only difference being the top-down set of the participant on that trial.

1 In a previous version of the analysis we applied an offline
high-pass filter. This revealed earlier attention effects than
without the filter (reported here), possibly reflecting filtering ar-
tifacts (Acunzo, MacKenzie, & van Rossum, 2012). These early
attention effects did not emerge in subsequent analyses (e.g.,
reverse cross-decoding, see footnote 2) and were thus deemed
unreliable.
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side, and in the other 24 scenes they appeared on different

sides. In total, the stimulus set consisted of 288 scenes.

During the experiment, each scene was presented once in its

original version and once flipped horizontally, leading to a

total of 576 unique scenes. All pictures were reduced to 480

(vertical) � 640 (horizontal) pixels, subtending 13.5� � 10� of

visual angle. Masks of the same size as the scenes (n ¼ 576)

were created by superimposing a naturalistic texture to

white noise generated at different spatial frequencies,

resulting in colored textures. All stimuli were presented

centrally and displayed on a grey background.

2.4. Physical salience experiment

In the physical salience experiment, participants reported the

presence or absence of a cross by pressing one of two buttons.

The location of the cross was made salient by converging line

elements (Fig. 1d) to mimic global contextual cues in natural

scenes. Participants performed 2 blocks of 80 trials. The

mapping of button to target presence and absence was

counterbalanced across participants. Fig. 1b shows the trial

structure. After a fixation interval (a pink “plus” symbol pre-

sented for 800msec), the line arraywas presented for 50msec,

followed by a perceptual mask (650 msec). Trials were sepa-

rated by a randomly jittered inter-trial interval ranging from

2200 msec to 3000 msec. The perceptual mask, its timing, and

the timing of the stimulus, were identical to those in the

naturalistic visual search experiment. Stimuli consisted of 48

black lines on a grey background (displayed on 6 imaginary

rows and 8 imaginary columns, each subtending about 1.5� of
visual angle), drawn within an area of 13.5� � 10� of visual

angle (Fig. 1b). The linesmade a position in the display salient;

in half of the trials a black cross (the target, of size 1.5� � 1.5�)
was presented at this location and in half it was absent. The

position of the area within which the target could appear was

counterbalanced across 8 possible locations: within the sec-

ond column (i.e., on the left) or the seventh column (i.e., on the

right), the target could appear in one of four positions (in the

second, third, fourth or fifth row). All stimuli were displayed

on a grey background.
2.5. MEG data acquisition and preprocessing

Neuromagnetic activity was recorded using a whole-head MEG

system with 102 magnetometers and 204 planar gradiometers

(Elekta Neuromag 306 MEG system, Helsinki, Finland). Data

were acquired continuously (with online sampling rate of

1000 Hz) and band-pass filtered online between .1 and 300 Hz.

Offlinepreprocessingwas performed usingMATLAB 8.0 and the

Fieldtrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011).

Data were epoched from �200 to 500 msec with respect to

stimulus onset. No offline filter was applied to the data.1 Based

on visual inspection, and blind to condition, trials and channels

containing artifacts (i.e., blinks, eye-movements, or unusually

large peak-to-peak amplitudes) were discarded from subse-

quent analyses. All trials (correct and incorrect) were included

in the analysis. Next, data were baseline corrected with respect

to the pre-stimulus period (with baseline from �200 msec to

0 msec) and down-sampled to 100 Hz to improve signal-to-

noise ratio (Grootswagers, Wardle, & Carlson, 2017). Data

from rejected channels were interpolated based on the average

of neighboring sensors of the same type.

2.6. MEG multivariate pattern analysis

All multivariate classification analyses were performed using

MATLAB 8.0 and theCoSMoMVPA toolbox (Oosterhof, Connolly,

& Haxby, 2016). Single-trial classification was performed sepa-

rately for every 10 msec time bin of the evoked field data of all

magnetometers; only data from magnetometers were used as

these sensors offered more reliable classification performance

than gradiometers in a comparable study (Kaiser et al., 2016). To

increase the signal-to-noise ratio, 1000 synthetic trials were

https://doi.org/10.1016/j.cortex.2018.11.018
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Fig. 3 e Within-experiment decoding results. Panel (a) shows the time-by-time decoding matrix within the physical

salience experiment, panel (b) the resulting matrix within the naturalistic visual search experiment. The outlined areas

highlight where decoding accuracy is significantly above chance (p < .05, corrected for multiple comparisons). Decoding on

the diagonal of the matrix of the physical salience experiment (c) is significantly above chance from 90 msec to 500 msec,

reaching its maximum accuracy at 330 msec post-stimulus. Decoding on the diagonal of the matrix of the naturalistic visual

search experiment (d) is significantly above chance from 80 msec to 420 msec, peaking at 110 msec and 230 msec.

2 The cross-decoding analysis was also performed in the
reverse direction: training the classifier on the main experiment
(separately for target and distracter trials) and testing on the
physical salience experiment. This yielded similar results as the
analysis reported here: The target-distracter difference on the
diagonal emerged after 200 msec, with significant differences
from 210 msec to 250 msec and from 280 msec to 380 msec. When
averaging results of the two cross-decoding analyses, the target-
distracter difference was significant (p < .05, corrected for mul-
tiple comparisons) from 220 msec to 390 msec and from 430 msec
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created for every condition in both the training and testing sets

(training and testing setswere always separate sets of trials; see

2.6.1 and 2.6.2 below). Each synthetic trial was created by

randomly selecting 5 trials and averaging across these trials.

Trialswere selectedwithout replacement until the pool of trials

was exhausted, such that each trial contributed to a roughly

equal number of synthetic trials. Classification accuracy was

evaluated by computing thepercentage of correct predictions of

the classifier. The decoding analysis was repeated for every

possible combination of training and testing time, leading to a

50� 50 points (i.e., 500msec� 500msecwith 100 Hz resolution)

matrix of classification accuracies for every participant. Single-

subject accuracy matrices were smoothed using a 3 � 3 time

points averaging box filter (i.e., 30 � 30 msec, for the training

and testing times, respectively); single-subject accuracy matrix

diagonals were smoothed with a 3-point (30 msec) boxcar filter.

To determine time periods of significant above-chance classi-

fication, a threshold-free cluster enhancement procedure

(Smith & Nichols, 2009) was used with default parameters. The

multiple-comparisons correction was based on a sign-

permutation test with null distributions created from 10,000

bootstrapping iterations and a significance threshold of Z > 1.64

(i.e., p < .05, one-tailed).

2.6.1. Within-experiment decoding analyses
A within-experiment decoding procedure was employed to

test whether Linear Discriminant Analysis (LDA) classifiers
could reliably discriminate MEG activity patterns evoked by

stimuli in the left versus right hemifield. This procedure was

performed once within the physical salience experiment and

once within the naturalistic visual search experiment. To this

end, each of the datasets was divided into two independent

subsets of trials, one of whichwas used as training set and the

other as testing set.

2.6.2. Cross-decoding analyses
In the cross-decoding analysis, LDA classifiers were trained to

discriminate between two conditions of interest in the phys-

ical salience experiment (MEG patterns evoked by left vs right

stimuli) and employed to discriminate between conditions in

the independent naturalistic visual search experiment (MEG

patterns evoked by left vs right objects in natural scenes;

Fig. 2a).2 This procedure was performed separately for each

time point. Classifier testing was performed as a function of
to 500 msec.

https://doi.org/10.1016/j.cortex.2018.11.018
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Fig. 4 e Results of the cross-decoding analysis: time-by-time matrices and time courses of target and distracter conditions.

(a) Overall cross-decoding of object location, averaging across target and distracter conditions. The outlined area highlights

where decoding accuracy is significantly above chance (p < .05, corrected for multiple comparisons). Panel (b) shows the

diagonal of the overall cross-decoding matrix. Decoding is significantly above chance from 50 msec after stimulus onset as

highlighted by black asterisks (p < .05, corrected for multiple comparisons). Decoding accuracy was maximum at 100 msec

and 260 msec. Panel (c) shows the time-by-time cross-decoding matrices of the target (left) and the distracter (center)

conditions, and their difference (right). Panel (d) shows the time course of decoding target object location (red line) and

distracter object location (blue line), reflecting the diagonals of the matrices shown in (c). Shaded colored areas represent

SEM. Target decoding on the diagonal was significantly above chance (p < .05, corrected for multiple comparisons) from

c o r t e x 1 2 2 ( 2 0 2 0 ) 2 2 5e2 3 4230
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Fig. 5 e Results of the searchlight analysis. Topographical

maps (mirrored across the midline) show the results of the

cross-decoding searchlight analysis on consecutive time

windows of 50 msec each from 0 msec to 500 msec after

stimulus onset, separately for the target condition (a), the

distracter condition (b) and their difference (c).

c o r t e x 1 2 2 ( 2 0 2 0 ) 2 2 5e2 3 4 231
the behavioral relevance of objects in scenes, with identical

scenes appearing in both target and distracter conditions

across participants (Fig. 2b). The difference of the decoding

time courses for target and distracter conditions was then

tested against zero. It should be noted that the classifier

trained on the physical salience experiment can use activity

patterns driven by both physical asymmetries and spatial

attention shifts. Crucially, however, these can be disentangled

in the naturalistic search experiment: in the main compari-

son, between target and distracter decoding, the same scenes

are included as targets and distracters, thus eliminating the

contribution of any physical asymmetries.

2.6.3. Searchlight analyses
To explore the approximate anatomical location of target and

distracter processing, a sensor-space searchlight analysis was

performed on consecutive 50 msec time windows ranging

from 0 msec to 500 msec post-stimulus. The cross-decoding

procedure was performed across the scalp using sensor

neighborhoods of 20 sensors each (Kaiser et al., 2016). Each of

these neighborhoods was created by defining a neighborhood

of 10 adjacent sensors in the left hemisphere that was sym-

metrically mirrored with corresponding sensors in the right

hemisphere, resulting in bilaterally symmetric maps. The

searchlight was performed for each 10 msec time point, and

the results of the individual time points within each 50 msec

window were averaged to obtain a single searchlight map for

that window. As the primary goal of this analysis was to

descriptively assess the scalp distribution of the effects, no

statistical tests were performed on the searchlight maps.
3. Results

3.1. Behavioral results

Behavioral performance in the naturalistic search experiment

showed that the task was sufficiently challenging, with an

average response accuracy of around 75% (target present tri-

als: 81%, SD ¼ 10%; target absent trials: 68%, SD ¼ 17%). The

average RT was around 500 msec (target present trials:

444 msec, SD ¼ 73 msec; target absent trials: 555 msec,

SD ¼ 79 msec).

In the physical salience experiment, response accuracy

was around 58% (target present trials: 64%, SD ¼ 20%; target

absent trials: 52%, SD ¼ 17%). The average RT was around

620 msec (target present trials: 585 msec, SD ¼ 190 msec;

target absent trials: 659 msec, SD ¼ 219 msec).

3.2. Within-experiment decoding results

To determine that MEG activity patterns contained decodable

information, and in this way ensure the feasibility of the cross-

decoding procedure, in a first analysis we checked whether
70 msec to 500 msec, peaking at 100 msec and 250 msec (maxim

significant from 50 msec to 150 msec, from 220 msec to 330 ms

260 msec). Target-Distracter difference decoding on the diagona

to 360 msec, and from 480 msec to 500 msec.
stimulus location within each experiment was decodable from

the data. Within each experiment, multivariate classifiers were

trained on a subset of trials to discriminate between left versus

right stimulus location, then tested on a different, independent

subset of the data. Significant above-chance decoding was

observed within each experiment (Fig. 3). Specifically, decoding

within the physical salience experiment was reliable from

100 msec to 500 msec, reaching its maximum accuracy at

330 msec (Fig. 3a). Decoding within the naturalistic visual

search experimentwas reliable aswell, ranging from90msec to

150 msec and from 190 msec to 280 msec, peaking at 230 msec

(Fig. 3b). These results highlight that MEG patterns contained

information about the stimulus location.

3.2.1. Cross-decoding results
Multivariate classifiers were trained on MEG data from the

physical salience experiment and tested onMEG data from the

naturalistic search experiment (see Fig. 2). This cross-

decoding, averaged across attention conditions (i.e., decod-

ing in target and distracter scenes), was highly reliable from

50msec after stimulus onset, with a first peak at 100msec and

a second peak at 260 msec (Fig. 4a,b). This result provides

evidence for a correspondence between the lateralized pro-

cessing evoked by the artificial stimuli in the physical salience

experiment and the objects in the natural scene experiment. It

is worth noting that the decoding peaks of the overall time x

time decoding matrix (Fig. 4a) fell on the diagonal, indicating

that the temporal evolution of the evoked patterns was

similar across the two experiments.

Having established that the location of objects in scenes

can be reliably decoded from MEG activity patterns, we next

asked when attention modulates this signal. To this end, we

separately decoded the position of target objects and
um at 250 msec). Distracter decoding on the diagonal was

ec, peaking at 100 msec and 260 msec (maximum at

l was significant from 240 msec to 320 msec, from 340 msec

https://doi.org/10.1016/j.cortex.2018.11.018
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Fig. 6 e Results of the analysis decoding target versus distracter scenes. (a) Time-by-time matrix of decoding accuracy. The

outlined area highlights where decoding accuracy is significantly above chance (p < .05, corrected for multiple comparisons).

Panel (b) shows the diagonal of the decoding matrix. Decoding is significantly above chance from 180 msec after stimulus

onset as highlighted by black asterisks (p < .05, corrected for multiple comparisons).

3 Single sensors did not show reliable attention effects in the
current study.
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distracter objects in otherwise identical scenes. As illustrated

in Fig. 4c (right panel), decoding of target locationwas stronger

and more reliable than decoding of distracter location. This is

clearly illustrated in Fig. 4d, which plots the diagonal of these

matrices and shows that significant differences emerged from

240 msec to 320 msec, from 340 msec to 360 msec, and from

480 msec to 500 msec.

3.2.2. Searchlight results
To explore the topography of these effects we performed a

sensor-space searchlight analysis on consecutive time win-

dows of 50msec each, from 0msec to 500msec post-stimulus.

This analysis revealed the time course of the cross-decoding

across the scalp, suggesting that the attention effect at

250 msec was primarily driven by lateral posterior sensors

before moving more anteriorly (Fig. 5c).

3.3. Target-distracter decoding

The cross-decoding analysis provided evidence that spatial

attentional selection starts at around 240 msec after scene

onset, while category-specific attentionalmodulation in similar

tasks was found from 180 msec after onset (Kaiser et al., 2016).

The presence of category-based attention at 180 msec (Kaiser

et al., 2016) implies that the brain already differentiates target

and distracter scenes at that time, thus before the spatial

attention effects observed here. To test whether in the current

study target and distracter scenes could similarly be differen-

tiated at this time point, we ran an additional analysis within

the naturalistic search experiment. In this analysis, we directly

decoded the presence of a target (vs a distracter) in scenes

showing either cars or people. Because the only relevant aspect

in this analysis was whether the objects were targets or dis-

tracters (i.e., matched or mismatched the category of the pre-

ceding cue) we averaged across category and location of the

objects in the scene. Interestingly, targets could be distin-

guished from distracters from 180 msec after scene onset

(Fig. 6). The peak was found at 400 msec, shortly before re-

sponses were made (mean RT ¼ 440 msec in target presence

trials). These results indicate that target presence is encoded

before attention moves to its location.
4. Discussion

The current study investigated the time course of attentional

orienting in cluttered natural scenes using multivariate decod-

ing ofMEGdata.We found that the location of objects in natural

scenes can be decoded with high accuracy from MEG activity

patterns from50msec after scene onset. The effect of top-down

attention on this decoding arose much later, starting at around

240 msec. Target presence itself (irrespective of location) could

bedecoded from180msecafter sceneonset.While thedecoding

of object locations at 50 msec clearly reflects a stimulus-driven

effect (i.e., presence vs absence of a foreground object), we can

be confident that the effects at 180 msec and 240 msec reflect

influences of top-down attention: First, the same set of scenes

was used for targets and distracters, with target status being

determinedsolelyby thematchbetween the scene category and

the preceding symbolic cue. Second, we excluded the contribu-

tion of bottom-up priming effects because the target category

varied unpredictably on a trial-by-trial basis. Taken together

with the results of Kaiser et al. (2016), our results suggest that

spatial attentional selection follows spatially-global category-

based attentional modulation.

The present results are consistent with previous M/EEG

studies investigating visual search in artificial arrays. These

studies showed that the attentional selection of a target

evokes lateralized activity in posterior sensors between

200 msece300 msec after stimulus onset (“N2pc”, e.g., Luck &

Hillyard, 1994; Eimer, 1996). Our study indicates that spatial

attentional selection in naturalistic search occurs at a similar

latency (Fig. 4d) and with a similar topography (Fig. 5c). This

demonstrates an important generalization of previous find-

ings to more naturalistic conditions, despite the differences

between artificial and naturalistic search (Peelen & Kastner,

2014; Wolfe et al., 2011) and between univariate and multi-

variate analysis methods.3

The current study complements a recent study that used

similar methods to investigate the time course of top-down

https://doi.org/10.1016/j.cortex.2018.11.018
https://doi.org/10.1016/j.cortex.2018.11.018
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category-specific attentional modulations in scenes (Kaiser

et al., 2016). There, decoding focused on object category pro-

cessing, with classifiers trained to distinguish exemplars of

people and cars and tested on scenes containing exemplars of

these categories. Results showed that the category of objects

present in scenes could be decoded from around 180 msec

after stimulus onset. Importantly, this effect was specific to

the behaviorally-relevant category from its first emergence,

with better decoding of target than distracter category already

at 180 msec. In other words, top-down attention modulated

category-level processing as soon as category informationwas

available.

Our present results show that spatially-specific attention

effects start at 240 msec, suggesting that attention first mod-

ulates spatially-global category representations, followed by

the spatial selection of the target (it should be noted, however,

that these latencies were obtained in different studies and

participants, and may thus not be directly comparable). This

sequence matches that observed in previous studies investi-

gating search for simple features in artificial displays, showing

that feature-based attentional modulation precedes spatially-

selective enhancement (Eimer, 2014; Hopf, Boelmans,

Schoenfeld, Luck, & Heinze, 2004). Our results thus support

the idea that content-based guidance is not limited to low-

level features but can be implemented at higher levels of the

visual system as well (Wyble, Folk, & Potter, 2013; Hickey,

Kaiser, & Peelen, 2015; Battistoni, Stein, & Peelen, 2017;

Wyble et al., 2018).

The spatial modulation observed here provides a neural

correlate of behavioral findings of attentional capture by ob-

jects matching a top-down category-based attentional set

(Reeder, van Zoest, & Peelen, 2015; Reeder & Peelen, 2013). In

these studies, participants searched for cars and people in

natural scenes. On a subset of trials, two irrelevant stimuli

appeared instead of the scenes. One of these stimuli was

quickly followed by a dot that participants were instructed to

detect. Results showed that participants were faster to detect

the dot when it appeared at the location of a stimulus that

shared mid-level features with the target category (e.g., a

wheel of a car, or an arm attached to a torso), providing evi-

dence for attentional capture. Importantly, the effect was also

observed when the mid-level features appeared at locations

that were never relevant to the search task. These findings

demonstrate that category-based attention is spatially global

and that it guides spatial attention to template-matching

stimuli. In conjunction with Kaiser et al. (2016), the current

results provide novel insight into the temporal evolution of

both these effects.

Interestingly, although spatial attention is captured by

template-matching objects, the detection of familiar object

categories in natural scenes may not require spatial atten-

tional selection. For example, target-specific EEG responses in

these tasks have been observed before 200msec (Thorpe et al.,

1996), more likely corresponding to the category-based mod-

ulation observed in Kaiser et al. (2016) than the spatial selec-

tion observed here. Similarly, in the current study response

patterns evoked by target and distracter scenes differed from

around 180 msec after stimulus onset, suggesting that target

features are detected before spatial attention moves to the

target location. Behavioral studies have shown that
participants may not be able to localize object categories in

natural scenes that have nonetheless been detected (Evans &

Treisman, 2005). Others have argued that the detection of

familiar object categories may not even require spatial

attention at all (Li, VanRullen, Koch, & Perona, 2002; see also;

Stein & Peelen, 2017). These findings suggest that spatially-

global category-based attention may be sufficient for detect-

ing target-diagnostic features.

In daily life, however, the detection of category-diagnostic

features is often not sufficient for guiding our behavior. Many

situations require us to bind features to identify objects at

finer levels. For example, wemight need to distinguish our red

car from our friend's green car, or to find our friend among

other people. These tasks require spatial attention to bind

features, as elegantly shown by work in neurological patients

with parietal damage (Cohen & Rafal, 1991; Friedman-Hill,

Robertson, & Treisman, 1995). Thus, while not directly

required in the current task, spatial selection may be an in-

tegral and obligatory aspect of top-down attention, evenwhen

directed to high-level categories (Reeder et al., 2015; Wyble

et al., 2013).

To conclude, the current study shows that spatial atten-

tional selection of target objects in natural scenes occurs at

around 240 msec after scene onset. This spatial modulation

appears to follow an earlier spatially-global categorical

attention modulation (Kaiser et al., 2016) that provides infor-

mation about target presence from around 180 msec. Our re-

sults are in line with theories of visual search proposing that

spatial attention is guided by feature-based selection

(Treisman & Sato, 1990; Wolfe, 1994), and importantly gener-

alize this idea to naturalistic search for familiar object cate-

gories in natural scenes.
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