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Theories of reinforcement learning and approach behaviour suggest that reward can 38 
increase the perceptual salience of environmental stimuli, ensuring that potential 39 
predictors of outcome are noticed in the future. But outcome commonly follows visual 40 
processing of the environment, occurring even when potential reward cues have long 41 
disappeared. How can reward feedback retroactively cause now-absent stimuli to 42 
become attention-drawing in the future? One possibility is that reward and attention 43 
interact to prime lingering visual representations of attended stimuli that sustain through 44 
the interval separating stimulus and outcome. Here we test this idea using multivariate 45 
pattern analysis of fMRI data collected from male and female humans. While in the 46 
scanner, participants searched for examples of target categories in briefly-presented 47 
pictures of city- and landscapes. Correct task performance was followed by reward 48 
feedback that could randomly have either high or low magnitude. Analysis showed that 49 
high-magnitude reward feedback boosted the lingering representation of target 50 
categories while reducing the representation of nontarget categories. The magnitude of 51 
this effect in each participant predicted the behavioural impact of reward on search 52 
performance in subsequent trials. Other analyses show that sensitivity to reward – as 53 
expressed in a personality questionnaire and in reactivity to reward feedback in the 54 
dopaminergic midbrain – predicted reward-elicited variance in lingering target and 55 
nontarget representations. Credit for rewarding outcome thus appears to be assigned to 56 
the target representation, causing the visual system to become sensitized for similar 57 
objects in the future.  58 
 59 
   60 

 61 
Significance Statement 62 

 63 
How do reward-predictive visual stimuli become salient and attention-drawing? In the 64 
real world, reward cues precede outcome and reward is commonly received long after 65 
potential predictors have disappeared. How can the representation of environmental 66 
stimuli be impacted by outcome that occurs later in time? Here we show that reward 67 
acts on lingering representations of environmental stimuli that sustain through the 68 
interval between stimulus and outcome. Using naturalistic scene stimuli and multivariate 69 
pattern analysis of fMRI data, we show that reward boosts the representation of 70 
attended objects and reduces the representation of unattended objects. This interaction 71 
of attention and reward-processing acts to prime vision for stimuli that may serve to 72 
predict outcome.  73 
 74 

 75 
 76 

  77 
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 78 
Introduction 79 

Reward-predictive stimuli become salient and draw attention even when this is 80 

strategically counter-productive (eg. Bromberg-Martin & Hikosaka, 2009; Hickey 81 

& van Zoest, 2012, Della Libera & Chelazzi, 2009; Hickey, Chelazzi, & 82 

Theeuwes, 2010a; Anderson, Laurent, & Yantis, 2011). In the same time frame, 83 

the neural response to reward shifts: initially a response to reward itself, it comes 84 

to be triggered by cues indicating the potential for reward (eg. Schultz, Dayan, & 85 

Montague, 1997). One account of approach behaviour - the incentive salience 86 

hypothesis - suggests a direct relationship between these observations. By this, 87 

the neural response to reward initially sensitizes the visual system to proximal 88 

cues, causing them to draw attention. When still-earlier cues become available in 89 

the environment, the process iterates: the ‘reward’ response, now triggered by 90 

the proximal cue, causes the still-earlier cue to itself become attention-drawing. 91 

Ultimately, this ensures that the animal is sensitive to the earliest predictors of 92 

reward in the environment. These draw attention, ensuring that the information 93 

they convey guides behaviour (Berridge & Robinson, 1998).  94 

In the lab and real world, reward cues precede actual outcome. A key challenge 95 

for the incentive salience hypothesis is therefore to solve the ‘credit assignment 96 

problem’ (eg. Sutton & Barto, 1998). How is the representation of environmental 97 

stimuli impacted by feedback later in time? We and others have suggested that 98 

this might occur through the potentiation of lingering visual representations of 99 

environmental stimuli (Hickey et al, 2010; Hickey & Peelen, 2015; Roelfsema et 100 
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al., 2010; Schiffer et al., 2014; Weil et al., 2010). By this, the neural response to 101 

reward triggers a process in which the representation of recently attended 102 

objects are ‘stamped in’ to visual cortex. Vision becomes sensitized for these 103 

stimuli, making them salient and attention-drawing.  104 

Here we used fMRI to test this hypothesis in naturalistic human vision. We had 105 

participants search for examples of target categories – cars, people, and trees – 106 

in briefly-presented images of real-world scenes (Figure 1A). When participants 107 

completed this task accurately, we rewarded them with points that had cash 108 

value. Our interest lay in how the magnitude of reward impacted lingering 109 

representations of objects that had been present in the scene. Crucially, many 110 

scenes contained objects of two types: targets and nontargets. This allowed us to 111 

test for a selective effect of reward outcome on previously attended versus 112 

ignored objects. 113 

In our design reward feedback was randomly determined for each trial: so long 114 

as participants responded correctly, they were equally likely to receive 1 point as 115 

100 points, and they were explicitly aware of this fact. This design feature 116 

requires some explanation. When reward is linked to a discrete category - for 117 

example, if detecting ‘people’ in a scene always results in high-magnitude reward 118 

– humans and other animals will look out for these objects and this involves the 119 

establishment of top-down attentional set. Attentional set changes how stimuli 120 

are encoded, and, though interesting in its own right, this effect is theoretically 121 

distinct from the direct, low-level, and non-strategic impact of reward feedback on 122 

already-encoded representations that is the focus of the current study (Maunsell, 123 
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2010; Hickey et al., 2010). Our use of random reward magnitude made it 124 

impossible for participants to establish attentional set for reward-predictive stimuli 125 

because stimuli had no predictive value. Accordingly, we were able to isolate the 126 

discrete low-level effect of reward feedback on object representations.  127 

To index variance in the quality of object representations, we calculated 128 

measures of category information using multivariate pattern analysis (MVPA) of 129 

fMRI data (Peelen & Kastner, 2011; Seidl et al., 2010; Hickey & Peelen, 2015). 130 

Our technique involves a comparison of the scene-elicited voxel-wise pattern in 131 

ventral visual cortex to benchmark data patterns in the same area collected 132 

during an independent localizer (Figure 1B). In the localizer, people view isolated 133 

examples of the object categories of interest. If the scene-elicited pattern is 134 

similar to one or more of these benchmark patterns, we can infer that examples 135 

of the corresponding category are being strongly represented in visual cortex.  136 

Our expectation was that high-magnitude reward would selectively boost the 137 

representation of previously attended objects, as reflected in an increase in the 138 

amount of category information in ventral visual cortex.  139 

Materials and Methods 140 

All procedures were approved by the ethics committee of the University of 141 

Amsterdam Department of Psychology. 142 

*** Fig 1 around here *** 143 

Participants 144 
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Twenty healthy volunteers with normal or corrected to normal vision gave 145 

informed consent before beginning the experiment and were financially 146 

compensated for their participation (7 male, one left-handed woman, mean 23.6 147 

years ± 2.3 SD).   148 

Experimental stimuli and design 149 

Before entering the scanner each participant completed a native language 150 

version of the BIS / BAS questionnaire (English: Carver and White, 1994; Dutch: 151 

Franken, Muris, & Rassin, 2005).  152 

In the scanner, an experimental session consisted of 5 scanner runs of 500 s. 153 

duration, each composed of 6 blocks of 20 trials. A run began with a 15 s. fixation 154 

interval and ended with a 30 s. fixation interval and 10 s. fixation intervals 155 

occurred between each block. A trial (3.367 s.) began with a fixation interval (800 156 

ms) followed by brief presentation of a scene (50 ms; 3° x 4° visual angle), a 157 

mask (333 ms), the reappearance of fixation (900 ms), and reward feedback 158 

(1284 ms; see Figure 1). Natural scene images (n = 240) were selected from an 159 

online database (Russel et al. 2008) and rendered in black and white. Scenes 160 

contained examples of cars, trees, and people, alongside a variety of other 161 

objects and textures. Of these three stimuli categories, two were identified during 162 

task instruction as target categories (T1 and T2 categories). Left hand response 163 

on an MR-compatible button box indicated the presence of an example of the T1 164 

category and right hand response an example of T2. The third category was task 165 

irrelevant and was not identified or discussed with the participant prior to 166 
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experimental participation (nontarget category). The identity of the T1, T2, and 167 

nontarget categories was counter-balanced across participants and participants 168 

reported whether each scene contained examples of either of the target 169 

categories.  170 

In each experimental block, four scenes contained one or more examples of T1 171 

without examples of T2 or nontarget, four contained T1 with one or more 172 

examples of the nontarget, four contained T2 without examples of T1 or 173 

nontarget, four contained T2 with one or more examples of the nontarget, and 174 

four contained no example of T1, T2, or the nontarget category. To remove the 175 

possibility of ordering effects, the order of trials was randomized within a block. 176 

Participants were instructed to make no response when the scene did not contain 177 

a target, they saw each scene 3 times throughout the course of the experiment, 178 

and scenes were randomly selected from each of five scene groups without 179 

replacement such that all 240 images were presented before the selection 180 

procedure reset. Scenes were masked with one of 48 images created by 181 

generating white noise at varying spatial frequencies and superimposing a 182 

naturalistic texture.  183 

During the feedback interval of each trial points with cash value were awarded to 184 

the participant. Correct task performance resulted in the receipt of either '001' or 185 

'100' points, presented centrally, with incorrect performance always resulting in 186 

the loss of 50 points. However, because reward magnitude was randomly 187 

determined for each correct trial, total pay was determined solely by task 188 
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accuracy and all participants received between €40 and €50 at the conclusion of 189 

the experiment.  190 

Object Selective Cortex Localizer 191 

Two localizer experiments followed the primary experimental session. The first of 192 

these was designed to identify object selective cortex (OSC) and comprised 2 193 

scanner runs of 336 s. duration, each containing 20 blocks of 20 trials. Each trial 194 

began with fixation (383 ms) followed by a central image of either an isolated 195 

everyday object on a white background or a pixel-scattered version of such an 196 

image (383 ms; 3° x 3°). Participants monitored for repetition of an image, which 197 

occurred twice in each block. Block order was counterbalanced across runs, 198 

each run began and ended with a 15 s. fixation block, and fixation blocks 199 

additionally occurred after every 4 experimental blocks.  200 

An OSC region of interest (ROI) was defined for each subject in native space by 201 

contrasting activity evoked by intact and scrambled objects and subsequently 202 

transformed to Talairach space. ROIs were generated by identifying occipital and 203 

temporal voxels in the ventral visual stream where this contrast garnered 204 

uncorrected p values less than 0.05. Mean OSC size was ~87 cm3 (3209 voxels) 205 

± ~54 cm3 SD (2017 voxels). 206 

Category localizer 207 

The second localizer experiment identified benchmark patterns of voxel 208 

activation in OSC associated with each of the three stimuli categories employed 209 

in the main experiment. It comprised 2 runs of 380 s. duration, each made up of 210 



REWARD AND LINGERING OBJECT REPRESENTATIONS 

 

9 

9 

20 blocks of 20 trials and 5 fixation blocks. Each trial contained a fixation period 211 

(367 ms) followed by a central image (383 ms;  3° x 3°) of an isolated car, tree, or 212 

headless human body on a white background (see Figure 1 for examples). 213 

Participants monitored for stimulus repetition, all trials in a block contained 214 

images from the same category, and every fourth block was a fixation block. 215 

Block order was counterbalanced across runs such that mean serial position of 216 

each condition was equal. Images of people were headless because in the 217 

scenes employed in the main experiment people were commonly too small to 218 

visually resolve the face. We did not want the localizer data to be driven by face 219 

processing if this did not compose a primary response to the scenes themselves.  220 

Data acquisition and preprocessing  221 

Imaging data was collected with a 3T Philips Achieva XT MRI scanner using a 32 222 

channel head-coil (functional data: echo planar imaging, 37 slices, 3x3x3 mm 223 

voxel size with 0.3 mm gap, repetition time [TR] = 2 s., echo time [TE] = 27.68 224 

ms, flip angle [FA] = 76.1°; structural data: T1-weighted MPRAGE, 220 slices, 225 

1x1x1 mm voxel size, 240 x 240 matrix, TR = 8.2 ms, TE = 4.38 ms, FA = 8°). 226 

Functional data were slice time and motion corrected, low-frequency drift was 227 

removed with a 0.0006 Hz high-pass filter, and structural and funcational data 228 

were transformed to Talairach space. Before transformation, results were 229 

spatially smoothed with a 6 mm, full-width, half-amplitude Gaussian kernel. This 230 

degree of smoothing has been found to improve correlation-based MVPA 231 

analysis (Op de Beeck, 2010). Data analysis relied on the AFNI software 232 
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package (Cox, 1996), CoSMoMVPA toolbox (Oosterhof, Connoly & Haxby, 233 

2016), and custom Matlab (MathWorks) and shell scripts.  234 

Data analysis 235 

Initial analysis of category localizer and experimental imaging data was similar 236 

and began with the creation of general linear models (GLMs) for each participant 237 

with conditional predictors for each correctly completed trial. The experiment was 238 

motivated by the idea that reward may have an impact on the lingering 239 

representation of objects that had been present in the now-absent scenes. As 240 

such, in GLM analysis of experimental results predictors were time-locked to the 241 

onset of reward feedback, not the onset of the scene. Predictors were convolved 242 

with a standard model of the hemodynamic response function with additional 243 

regressors to account for changes in mean signal across scanning runs and for 244 

head motion. For pattern analysis, the resulting t values for each voxel and 245 

condition were normalized by subtracting across all values for one voxel the 246 

mean value observed across conditions (see Haxby et al. 2001). This eliminates 247 

voxelwise differences in hemodynamic response that are unrelated to 248 

experimental manipulations while retaining conditional variability.  249 

Patterns of normalized t value observed in OSC during the experiment were 250 

correlated with patterns of normalized t value observed in the same area in the 251 

category localizer. Each condition of the main experiment thus had three 252 

associated values describing the similarity of the scene-elicited data to the car, 253 

tree, or person benchmarks derived from the localizer experiment (see Figure 254 
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1b). These correlations were Fisher transformed and organized as a function of 255 

whether each of the three categories were present in the scene, whether they 256 

acted as target or nontarget, and whether high or low magnitude reward was 257 

received in that trial. Category information was computed for categories that were 258 

present in the scene by subtracting the correlation between scene pattern and 259 

the benchmark for the target that was absent from the scene from the correlation 260 

between scene pattern and benchmark for the respective stimulus present in the 261 

scene. For example, for a scene containing a person target and tree non-target, 262 

identification of category information about people would begin with calculation of 263 

the correlation between scene pattern and people benchmark. The correlation 264 

between scene pattern and cars benchmark was subsequently subtracted. 265 

Similarly, identification of information specific to the tree non-target would begin 266 

with correlation between scene pattern and tree benchmark followed by 267 

subtraction of correlation between scene pattern and cars benchmark.  268 

*** Figs 2,3,4 around here *** 269 

Results 270 

Multivoxel fMRI  271 

Primary analysis began with examination of the impact of high-magnitude reward 272 

on target and nontarget category information in object selective cortex (OSC). As 273 

illustrated in Figure 2a, information about the target category increased following 274 

high-magnitude reward, both when the target was presented alongside an 275 

example of the irrelevant nontarget (solid red line) and when this nontarget was 276 
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absent (broken red line). In contrast, information about the nontarget category 277 

decreased following reward (solid blue line). In a repeated measures analysis of 278 

variance (RANOVA) of trials where both target and nontarget were present this 279 

pattern expressed as a significant interaction (F(1,19) = 10.476, p = 0.004, p
2= 280 

0.355; main effects Fs < 1). Follow-up contrasts revealed a significant effect of 281 

reward on both target information (t(19) = 3.639, p = 0.002, Cohen’s d = 0.825, 282 

Morris & DeShon, 2002) and nontarget information (t(19) = -2.260, p = 0.036, 283 

Cohen’s d = -0.506).  284 

Behaviour 285 

High-magnitude reward appears to have caused a sharpening of the lingering 286 

target representation in OSC relative to the representation of other objects in the 287 

scene. To determine if this had an impact on behaviour we looked to sequential 288 

effects on search performance, examining the impact of reward feedback in one 289 

trial on accuracy in the next (Hickey, Chelazzi, & Theeuwes, 2010a; Hickey, 290 

Kaiser, & Peelen, 2015; Hickey & Los, 2015). When we examined trials where 291 

the nontarget was present in both instances, high-magnitude reward in one trial 292 

was nominally associated with a small and not-significant cost to search 293 

accuracy in the next (77.1% to 75.6%; t(19) = 0.552, p = 0.587, Cohen’s d = 294 

0.124). However, as illustrated in Figure 2b, individual variability in this 295 

behavioural effect was predicted by the strength of reward’s influence on stimuli 296 

representation in OSC (as measured in a point estimate of the interaction; r(19) = 297 

0.459, p = 0.042). Pearson correlation values are sensitive to extreme values, so 298 

we additionally conducted a Studentized bootstrap analysis of this correlation 299 
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(with 104 permutations in outer bootstrap and 100 permutations in inner 300 

bootstrap). This analysis, which is much less sensitive to extreme values, also 301 

identified a reliable effect (rboot = 0.424, pboot = 0.041). Participants who showed a 302 

strong reward-related increase in the target representation, relative to the 303 

nontarget representation, thus showed a reduced cost on task accuracy (or even 304 

a benefit) on the second of sequential trials when the nontarget was present in 305 

both scenes. An independent analysis of trials where the nontarget was absent in 306 

the second scene revealed no corresponding relationship (r(19) = 0.161; p = 307 

0.499).  308 

To sum, those participants whose imaging data showed a strong and selective 309 

effect of reward on lingering target representations, relative to nontarget 310 

representations, also demonstrated the greatest sequential benefits of reward on 311 

task performance. This appears to be a product of the variation in OSC 312 

representation of stimuli present in the first scene, rather than a more generic 313 

influence of reward, in so far that the relationship emerged only when we 314 

examined performance for scenes where a nontarget object category had been 315 

repeated.  316 

Whole brain correlation analysis 317 

In order to identify brain areas involved in instantiating the reward effects in 318 

visual cortex described above we adopted a whole-brain correlational technique 319 

that we have used in earlier work (Hickey & Peelen, 2015). This analysis began 320 

with a contrast of results for each participant across conditions where feedback 321 
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indicated high-magnitude versus low-magnitude reward outcome. For each voxel 322 

in brain space we subsequently calculated Pearson correlation coefficients for 323 

the relationship between reward effect in that voxel and the impact of high-324 

magnitude reward on target and nontarget information in OSC. This allowed us to 325 

identify voxels where the strength of the univariate response to high-magnitude 326 

reward predicted the impact of reward on the target and nontarget 327 

representations in OSC across participants.  328 

This approach identified a small set of voxel clusters (table 1), including areas in 329 

the vicinity of the substantia nigra (SN), ventral tegmental area (VTA), and 330 

nucleus accumbens (NAcc; see Figure 3). Critically, correlations in SN / NAcc 331 

clusters did not appear to differ as a function of whether category information for 332 

targets or nontargets was examined. When we conducted equivalent analysis 333 

relating voxel-wise activation to the specific increase of target representation – as 334 

reflected in a point estimate of the interaction illustrated in Figure 2a – no voxels 335 

showed a reliable relationship (all ps > 0.0001). Activity in these midbrain areas 336 

therefore did not predict the sharpening of target representation described above 337 

and illustrated in Figure 2a, but rather appears to predict an increase in the 338 

strength of representation for both target and nontarget information.  339 

Personality inventory 340 

Prior to beginning the experiment all participants completed a personality 341 

inventory, namely the behavioural inhibition system / behavioural activation 342 

system scale (BIS / BAS scale; Carver & White, 1994). This scale is composed of 343 
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24 statements and participants rate their agreement to each statement on a 4-344 

point scale. The BAS subscale of this measure is thought to index a reward-345 

sensitive motivational system that underlies approach behaviour, and it loads on 346 

agreement with statements like ‘I go out of my way to get things I want’ and 347 

‘When I get something I want, I feel excited and energized.’ The BIS subscale 348 

rather measures a punishment-sensitive system that underlies aversion and 349 

avoidance of negative situations and outcomes, and it loads on statements like 350 

‘Criticism and scolding hurts me quite a bit’ and ‘I worry about making mistakes’.    351 

Consistent with results from our prior work (Hickey & Peelen, 2015; Hickey, 352 

Chelazzi, & Theeuwes, 2010b), high BAS scores predicted the impact of high-353 

magnitude reward on target category information in OSC (r = 0.567, p = 0.009; 354 

Figure 4A), much as was observed in analysis of SN and NAcc activation 355 

described above. This relationship also emerged in analysis of the effect of high-356 

magnitude reward on non-target category information (r = 0.467, p = 0.038; 357 

Figure 4B). Again, we calculated Studentized bootstrap tests of correlation to 358 

ensure that these relationships were not driven by extreme values; this 359 

suggested that while the target relationship is reliable (rboot = 0.546, pboot = 360 

0.016), the nontarget relationship should be interpreted carefully (rboot = 0.447, 361 

pboot = 0.059). No relationship with BIS was identified (target: r = -0.116, p = 362 

0.628; nontarget: r = -0.239, p = 0.310). This does not appear to be a product of 363 

increased task motivation, in that BAS did not predict general task performance (r 364 

= -0.02 for the correlation of BAS to cross-conditional task accuracy, r = -0.07 for 365 

the correlation of BAS to cross-conditional RT). BAS and mean reward activation 366 
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in the midbrain voxels identified in Figure 1 and Table 1 were positively 367 

correlated (r = 0.515, p = 0.020). Those participants with a reward-driven 368 

personality thus show an increase in sensitivity to reward feedback, such that 369 

high-magnitude reward boosts the representation of both target and nontarget 370 

stimuli present in the scene.  371 

*** Table 1 around here *** 372 

Discussion 373 

Reward’s impact on object representations in visual cortex 374 

How does reward cause real-world stimuli to become salient and attention-375 

drawing? One possibility is that reward primes the lingering representation of 376 

attended environmental stimuli in visual cortex, causing vision to become 377 

sensitized to these objects. To test this, we had human participants report the 378 

presence of examples of target categories in natural scene images (Figure 1). 379 

When participants responded correctly, the scene disappeared and was replaced 380 

with feedback indicating reward that randomly had either high or low magnitude. 381 

FMRI results showed that high-magnitude reward boosted the representation of 382 

targets and diminished the representation of nontarget objects that had been 383 

present in the scene (Figure 2a). Reward thus selectively primed the 384 

representation of recently attended stimuli relative to ignored stimuli.  385 

The total magnitude of this effect in each participant predicted the influence 386 

reward had on that person’s visual search behaviour. When examples of a 387 

nontarget category appeared in two sequential scenes, participants who showed 388 
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a strong effect of high-magnitude reward on category information also showed a 389 

positive effect of high-magnitude reward on task accuracy in the next trial (Figure 390 

2b; cf. Weil et al., 2010). This relationship emerged only when scenes contained 391 

repeated examples of the same nontarget category, suggesting that a reduction 392 

in nontarget category information in one trial caused subsequent examples of this 393 

category to become easier to ignore.  394 

When participants received high-magnitude reward, responses in visual cortex 395 

were strongly biased toward the target object relative to the nontarget object. 396 

Interestingly, after low-magnitude reward no such bias was observed, such that 397 

targets and nontargets were equally represented (Figure 2a). At first glance, this 398 

may seem to contradict studies using similar stimuli and analysis to show 399 

enhanced processing of targets (Peelen & Kastner, 2014). An important 400 

difference, however, is that participants here performed a discrimination task (T1 401 

vs T2), whereas in previous studies participants detected the presence of a 402 

single cued category. When searching for one category, participants are able to 403 

form strong top-down attentional templates that bias the processing of the scene 404 

in favour of the target category once the scene appears (Peelen & Kastner, 405 

2014). Our results suggest that such top-down effects are weaker when 406 

participants look for multiple categories, in line with behavioral studies 407 

(Houtkamp & Roelfsema, 2009; Stein & Peelen, 2017). 408 

Another possible explanation is that the receipt of low-magnitude reward – a sub-409 

optimal outcome – was recognized by participants as a loss. We have recently 410 

found that loss-associated objects tend to be badly represented in ventral visual 411 
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cortex, even under circumstances where they are strategically useful (Barbaro, 412 

Peelen, & Hickey, submitted). In the current study participants did not know 413 

whether high- or low-magnitude reward would be received at the moment of 414 

scene presentation, suggesting that sub-optimal outcome may trigger a 415 

reweighting of target and nontarget representations after these have been 416 

encoded in the visual system (i.e. in visual memory; Gong & Li, 2014; Infanti et 417 

al., 2015). This relative down-weighting of loss-associated stimuli may be similar 418 

in nature to the inhibition of disgusting objects (eg. Zimmer et al., 2015).  419 

Our main finding of a target-specific effect of reward on visual cortex 420 

representation is consistent with other fMRI work investigating the credit 421 

assignment problem in vision. Schiffer et al. (2014) gracefully addressed this 422 

issue by examining univariate BOLD responses in the fusiform face area (FFA) 423 

and the parahippocampal place area (PPA). Participants reported whether they 424 

saw a house or a face in images that contained either degraded examples of 425 

these stimuli or were pure noise. When participants reported seeing a house or 426 

face in a pure noise image, and were subsequently rewarded for this response, 427 

results showed an activity increase in the corresponding specialized visual area 428 

(ie. increase in PPA when house was reported, increase in FFA when face was 429 

reported). This is in line with the current results, where we also see an impact of 430 

reward on categorical information in ventral visual cortex.  431 

A notable distinction with the current study is that the images employed by 432 

Schiffer et al. (2014) contained only degraded examples of single objects, and 433 

participants had to report which of two objects they saw. There is the potential 434 
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that a strategic decision to make one of two possible responses could have 435 

generated a correlate in the visual system, even in the absence of any 436 

corresponding perceptual experience when the noise stimulus was viewed. This 437 

introduces some uncertainty as to whether reward’s impact on visual cortex in 438 

Schiffer et al. (2014) reflects a change to lingering perceptual representations or 439 

a later influence on the decision-making process. In contrast, in the current study 440 

the perceptual experience was unambiguous and we observe effects on the 441 

representation of both targets and nontargets. The nontarget effects in particular 442 

suggest an impact on visual representations, rather than a correlate of post-443 

perceptual decision-making, because these objects had no importance to 444 

strategic task responses.  445 

In contrast to this observation of increased reward-related activity in visual 446 

cortex, Arsenault et al. (2013) found that reward decreased the representation of 447 

a reward-predictive cue. In this monkey fMRI study, animals received liquid 448 

reward that was commonly preceded by a cue. However, analysis was focussed 449 

on trials where reward was not predicted, and thus not preceded by the visual 450 

stimulus. Results showed that unanticipated reward of this nature had a robust 451 

impact on areas of visual cortex responsible for cue representation (as identified 452 

in a separate experimental task). However, surprisingly, the effect direction was 453 

negative: cortical areas responsible for representation of the cue became less 454 

active when reward was unexpectedly received. This could have reflected the 455 

beginning of extinction, but results from further experimentation showed that the 456 
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magnitude of this negative effect predicted the positive impact of reward on overt 457 

behaviour.  458 

Arsenault et al. (2013) suggest that this puzzling finding may reflect action of a 459 

mechanism in vision that accentuates the representation of a stimulus by 460 

‘quietening’ noise in the system. By this, the reduction in BOLD reflects an 461 

improvement in cue representation through noise suppression. There is room for 462 

further research to determine how this type of inhibitory mechanism acts in 463 

concert with the excitatory mechanism identified by Schiffer et al. (2014). It is 464 

worth noting, however, that both of these mechanisms could underlie the 465 

variance in multivariate category information observed in the current study: both 466 

a reduction in neural noise and a boost in target signal would cause an increase 467 

in MVPA category information. 468 

Individual differences in dopaminergic midbrain activity and reward sensitivity 469 

We conducted a whole-brain correlational analysis in order to identify the 470 

functional network involved in instantiating reward’s impact on lingering category 471 

information in visual cortex. This identified a small set of clusters where individual 472 

differences in BOLD responsivity to high-magnitude reward (versus low-473 

magnitude reward) predicted individual differences in the increase of category 474 

information in ventral visual cortex (Table 1). Notable here were clusters in or 475 

close to the SN and VTA, midbrain nuclei known to contain high concentrations 476 

of dopaminergic neurons, and clusters in or around the NAcc, a primary 477 

dopamine target (Figure 3). These results support the notion that the DA system 478 
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is involved in mediating reward’s impact on visual representations, in line with the 479 

incentive salience hypothesis (Berridge & Robinson, 1998; Hickey & Peelen, 480 

2015). However, it is important to note that we identified a relationship between 481 

midbrain activity and the representation of both targets and nontargets, not the 482 

sharpening of target representation identified in our primary analysis. Analyses 483 

targeted at identifying functional predictors of the differential reward-related 484 

effects observed in OSC (target versus nontarget) did not identify any brain areas 485 

that reliably showed this relationship. 486 

Why do some people show a greater dopaminergic response to reward? Our 487 

results show this is related to individual differences in personality. We find a 488 

correlation between BAS personality scores – reflecting trait sensitivity to reward 489 

feedback – and the impact of high-magnitude reward on target (Figure 4a) and 490 

nontarget category information (Figure 4b). High BAS participants were also 491 

those who had strong midbrain responses to reward feedback, as reflected in a 492 

positive correlation of these measures. This suggests a role for dopaminergic 493 

midbrain structures in the definition of this personality trait, as has been proposed 494 

by others before us (Beaver et al., 2006; Hahn et al., 2009).  495 

We have shown that, on one hand, reward has a selective effect, differentially 496 

modulating representations of targets and nontargets in ventral visual cortex. On 497 

the other, individual differences in reward responsivity and midbrain activity 498 

predict a non-specific boost to both targets and nontargets in visual cortex. How 499 

can these results be reconciled? One possibility is that reward-sensitive 500 

participants may have attended to both targets and nontargets in the scenes. 501 
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Participants were informed that there was no relationship between stimuli 502 

characteristics and reward in our design, but they may have nevertheless 503 

attempted to identify objects in the scenes that predicted outcome. This could be 504 

a strategic effort, reflecting disbelief in our description of the experimental 505 

parameters, or it could be automatic, reflecting a mechanism in visual cognition 506 

that may be active even when strategically unwarranted (eg. Gottlieb et al., 507 

2013). In either case, the result would be an attentive response to targets – 508 

required in order to correctly complete the task – but also selection and 509 

processing of nontarget scene characteristics as participants searched for 510 

predictive relationships between scene features and outcome. A greater 511 

dopaminergic response to high-magnitude reward could in this way boost 512 

representations of both targets and distractors, as is observed in our results.  513 

Summary 514 

We demonstrate that high-magnitude reward following visual search through 515 

images of real-world scenes creates a strong bias in the visual system to 516 

represent previously attended objects relative to ignored objects. Participants are 517 

subsequently less distracted by examples of the nontarget category, as 518 

expressed in a behavioural advantage. We interpret this as evidence of the 519 

assignment of credit to the target representation, causing the visual system to 520 

become sensitized for similar objects in the future.  521 

522 
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 615 
 616 
 617 

Legend 618 
 619 

Figure 1. A.) Example of experimental trial. B.) Analytic approach. 620 
 621 
Figure 2. A.) Results from pattern analysis in OSC. Reward differentially modulated the 622 
representations of targets and nontargets. B.) Correlation of reward effect on OSC 623 
information with reward effect on behaviour. The OSC effect is calculated as the point 624 
estimate of category information interaction of the solid red and blue lines in panel a. 625 
The behavioural effect reflects the impact of high-magnitude versus low-magnitude 626 
reward on performance in the next immediate trial, with the sole confine that the non-627 
target category was present in each of these two different scenes. Error bars reflect 628 
within-participant standard error of the mean (Cousineau, 2005). 629 
 630 
Figure 3. A.) Results from whole brain correlation of reward response to reward effect 631 
on OSC target information. Marked in broken outline are the bilateral nuclei accumbens 632 
(NAcc; anterior) and substantia nigrae (SN; posterior). Identified voxels show a relative 633 
increase in activity in response to high-magnitude reward feedback that predicts the 634 
reward-related benefit to target representation, calculated across participants. Results in 635 
panel A are FDR corrected for multiple comparisons (Bejnamini & Hochberg, 1995). B.) 636 
Equivalent analysis with nontarget information. Results in panel B are not corrected for 637 
multiple comparisons but are thresholded at p < 0.0001.  638 
 639 
Figure 4. A.) Relationship between participant BAS score and the change in target 640 
information caused by high-magnitude reward. B.) The same relationship, but with 641 
change in nontarget information.  642 
 643 
Table 1. Results from whole brain correlation analysis. Locations in Talairach 644 
coordinates reflect peak value in cluster.  645 
  646 
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Table 1 647 
 648 

Target        corrected p < 0.05 
                   uncorrected p < 1.9e-5 

x  y z size (voxels) 

NAcc (R) +17 +8 -7 5 

SN (L) -5 -11 -7 5 

SN (R) +5 -11 -7 3 

Red Nucleus (L) -2 -23 -10 2 

Inferior frontal gyrus (R) +35 +23 -10 2 

     

Nontarget   uncorrected p < 0.0001     

Fusiform gyrus (R)  +41 -29 -28 41 

Putamen / Caudate / NAcc (R) +23 +14 -7 23 

Fusiform gyrus (L) -50 -26 -28 22 

Middle / inferior frontal gyrus (R) +38 +35 -4 14 

SN (L) -5 -14 -7 4 

SN (R) +8 -14 -7 3 

Middle frontal gyrus (L) -38 +41 +6 3 

Caudate / NAcc (L) -8 +11 -7 3 
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