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Abstract 39 
 40 

Objects associated with reward draw attention and evoke enhanced activity in visual 41 

cortex. What is the underlying mechanism? One possibility is that reward’s impact on 42 

vision is mediated by unique circuitry that modulates sensory processing, selectively 43 

increasing the salience of reward-associated stimuli. Alternatively, effects of reward may 44 

be part of a more general mechanism that prioritizes the processing of any beneficial 45 

object, importantly including stimuli that are associated with the evasion of loss. Here, 46 

we test these competing hypotheses by having male and female humans detect 47 

naturalistic objects associated with monetary reward, the evasion of equivalent loss, or 48 

neither of these. If vision is economically normative, processing of objects associated to 49 

reward and evasion of loss should be prioritized relative to neutral stimuli. Results from 50 

fMRI and behavioural experiments show that this is not the case: while objects 51 

associated with reward were better detected and represented in ventral visual cortex, 52 

detection and representation of stimuli associated with the evasion of loss was 53 

degraded. Representations in parietal cortex reveal a notable exception to this pattern, 54 

showing enhanced encoding of both reward- and loss-associated stimuli. Experience-55 

driven visual prioritization can thus be economically irrational, driven by valence rather 56 

than objective utility.  57 

 58 

  59 
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Significance Statement 60 

Normative economic models propose that gain should have the same value as 61 

evasion of equivalent loss. Is human vision rational in this way? Objects 62 

associated with reward draw attention and are well-represented in visual cortex. 63 

This is thought to have evolutionary origins, highlighting objects likely to provide 64 

benefit in the future. But benefit can be conferred not only through gain, but also 65 

through evasion of loss. Here we demonstrate that the visual system prioritizes 66 

real-world objects presented in images of natural scenes only when these objects 67 

have been associated to reward, not when they have provided the opportunity to 68 

evade financial loss. Visual selection is thus non-normative and economically 69 

irrational, driven by valence rather than objective utility.  70 

 71 

 72 

 73 

 74 

 75 

 76 

 77 

 78 

Introduction 79 
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Visual stimuli associated with reward become salient and attention-drawing. As a 80 

result, they are easy to find as targets of visual search but hard to ignore when 81 

they act as task-irrelevant distractors (for review: Anderson, 2015; Le Pelley et 82 

al., 2015). This selective bias sustains when it is counter-productive (Hickey, 83 

Chelazzi, & Theeuwes, 2010a) and appears to rely at least in part on plasticity in 84 

visual cortex (van Koningsbruggen, Ficarella, Battelli, & Hickey, 2016), 85 

suggesting that it is a product of implicit attentional and perceptual learning rather 86 

than explicit strategy. It may have evolutionary origins - facilitating the search for 87 

food - and could underlie maladaptive selective behaviour observed in eating 88 

disorders and addiction (Berridge, 1996; Robinson & Berridge, 1993). 89 

This effect of reward on selection has been interpreted in two ways. On one hand 90 

is the idea that reward may activate unique and specific brain mechanisms that 91 

prioritize reward-predictive stimuli in visual processing (Roelfsema, van Ooyen, & 92 

Watanabe, 2010; Hickey, Chelazzi, & Theeuwes, 2010a). This is in line with 93 

ideas from the animal literature about approach behaviour and the function of 94 

reward-related dopamine (Berridge & Robinson, 1998), and is reflected in a 95 

recent computational model that proposes long-range neurochemical interactions 96 

between the reward system and visual cortex (Roelfsema & van Ooijen, 2005). 97 

But on the other hand is the equally-compelling idea that attentional bias to 98 

reward-associated stimuli might constitute one instantiation of a broader 99 

motivational mechanism in vision (Gottlieb, 2012; Le Pelley et al., 2016). Using a 100 

term from economics, this would act to maximize objective utility - the absolute 101 

quality or usefulness of outcome - by prioritizing any informative object that can 102 
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be acted on to create a relative benefit, including stimuli that predict negative 103 

outcome when this information can be used to evade greater loss or harm.  104 

Here we test these accounts of reward's influence on visual selection. We 105 

designed a visual search task in which participants could accumulate points with 106 

cash value by correctly detecting examples of target categories in pictures of 107 

natural scenes. A given category could be associated with rewarding outcome, 108 

neutral outcome, or loss. Correct detection of an example of the reward-109 

associated category thus resulted in receipt of 150 points, but failure to detect 110 

this target garnered only 50 points. In contrast, correct detection of an example 111 

from the loss-associated category resulted in the forfeiture of 50 points, but 112 

failure to detect this target resulted in the greater loss of 150 points. Finally, 113 

detection of a neutral target garnered only 1 point and failure to detect this target 114 

resulted in the loss of only 1 point. Accurate detection of both reward- and loss-115 

associated targets in our design therefore had a consistent benefit of 100 points 116 

relative to incorrect performance, making them more valuable than neutral 117 

targets, and participants were made explicitly aware of this fact.  118 

If selective bias for reward-associated stimuli reflects a rational, utility-maximizing 119 

mechanism, reward- and loss-associated targets should be prioritized equally in 120 

our task. This motivates the set of predictions illustrated in Figures 1A and 1B, 121 

which we refer to as the utility model. Targets should draw attention and be well 122 

represented in visual cortex (Hickey, Chelazzi, & Theeuwes, 2010; Anderson, 123 

Laurent, & Yantis, 2011), but reward- and loss-associated targets should draw 124 
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attention with greater strength than neutral targets (Figure 1A). When these 125 

objects act as task-irrelevant distractors, their salience will cause them to 126 

interfere with search for other targets and they will need to be attentionally 127 

suppressed (Hickey & Peelen, 2015, 2017; Sawaki, Luck, & Raymond, 2015; 128 

Figure 1B). But if selective bias for reward-associated stimuli is not economically 129 

rational, it presumably reflects an impact of the absolute valence of outcome. By 130 

this valence model, targets that predict reward should be visually salient (Figure 131 

1C), and reward-associated distractors should require strong attentional 132 

suppression (Figure 1D). Targets predicting sub-optimal outcome, however, may 133 

not only fail to draw attention, but be actively suppressed and poorly represented 134 

in the visual system (Hickey, Chelazzi, & Theeuwes, 2010; Hickey & van Zoest, 135 

2012; Hickey & Peelen, 2017; Figure 1C). If this is so, loss-associated distractors 136 

may not interfere with search, thus requiring little inhibition (Figure 1D). 137 

Materials and Methods 138 

We conducted two experiments to test the predictions illustrated in Figure 1. 139 

Experiment 1 relied on the use of multivariate pattern analysis (MVPA) of human 140 

fMRI data to index the quality of visual representations in the brain. While in the 141 

scanner, 23 participants searched for examples of real-world object categories in 142 

images of city- and landscapes (Figure 2A). The target category – cars, trees, 143 

buildings, or people – was indicated at the beginning of each block of trials, and 144 

for each participant one object category was associated to reward when it acted 145 

as target, one to loss, and the others to neutral outcome (Figure 2B). Importantly, 146 
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when search was for one of the neutral categories, examples of the reward-147 

associated, loss-associated, and other neutral category appeared in the scenes 148 

as irrelevant distractors.  149 

To maximize our power to detect potentially-subtle effects on distractor 150 

representations, Experiment 1 adopted a design where examples of all distractor 151 

categories were present in every scene. We therefore conducted a second 152 

behavioural experiment to determine how the association of reward or loss to 153 

distractors impacted search behaviour. Here, 101 participants completed a 154 

variant of the task in which outcome was manipulated independently of target 155 

identity. Each block thus began with a cue indicating both target category and 156 

pay scheme and scenes only occasionally contained outcome-associated 157 

distractors. By looking at performance within each block we were able to 158 

examine how outcome association impacted target detection, whereas by looking 159 

across blocks we were able to see how examples from object categories that had 160 

recently been associated with reward or loss came to interfere with detection of 161 

neutral targets.      162 

Participants 163 

Twenty-four volunteers (9 female, 25 years +/- 4 SD) gave informed consent 164 

before completing Experiment 1. One participant reported the target as present in 165 

>90% of trials and was excluded from analysis. One hundred and five volunteers 166 

gave informed consent before completing Experiment 2 (79 female, 23 years +/- 167 

4 SD). Three participants were excluded because of low accuracy (>3 SD from 168 
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group mean) and one because of inconsistent responses on a screening 169 

questionnaire. For both experiments, sample size was guided by observed effect 170 

sizes in our prior work employing similar methodology. All methods were 171 

approved by the University of Trento ethical committee and adhered to the 172 

Declaration of Helsinki.  173 

Experiment 1 – Object Selective Cortex Localizer 174 

The object-selective cortex (OSC) localizer involved 2 scanner runs of 317 s. 175 

duration, each comprised of 16 blocks of 20 trials and 3 fixation blocks. Each run 176 

started with a 15 s fixation period followed by a 2 s reminder of task instructions 177 

and ended with a 15 s fixation period. Each trial began with fixation (400 ms) 178 

followed by a central image of an isolated everyday object (e.g. telephone, alarm 179 

clock, blender; 350 ms, n=20) or a pixel-scattered version of one of these 180 

images. Participants monitored for image repetition, which occurred once per 181 

block. Every 5th block was a fixation block, where for 15 s only the fixation cross 182 

was presented.  183 

Experiment 1 - Category Pattern Localizer 184 

The category pattern localizer involved 2 scanner runs of 392 s. duration, each 185 

comprised of 20 blocks of 20 trials and 4 fixation blocks. Each run started with a 186 

15 s fixation period followed by a 2 s reminder of task instructions and ended with 187 

a 15 s fixation period. In each block images of isolated examples of one of the 188 

four relevant stimuli categories were presented (n=40 per category). Each trial 189 

began with fixation (400 ms) followed by image presentation (350 ms). As in the 190 
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OSC localizer, participants monitored for image repetition, which occurred once 191 

per block, and every 5th block was a fixation block where for 15 s only the 192 

fixation cross was presented. Note that localizer images of people were headless 193 

because faces in the primary experimental task were commonly too small to 194 

visually resolve. We did not want the localizer pattern to reflect the encoding of 195 

faces if this was not possible in the experiment itself.  196 

As an internal check, we conducted a split-half correlation analysis of category 197 

patterns in OSC. This correlated the pattern for each category as derived from 198 

half the data with the pattern for each category as derived from the other half of 199 

the data. Patterns for the same categories were similar, and thus positively 200 

correlated on average (0.73), whereas the patterns across categories were 201 

dissimilar and thus negatively correlated (-0.23).  202 

Experiment 1 - Design 203 

The primary experiment involved 4 scanner runs of 590 s. duration, each 204 

comprised of 8 blocks of 24 trials. Each run started and ended with a 15 s fixation 205 

period. At the beginning of each block central text indicated the target category 206 

for the coming block for 10 s (cars, trees, buildings, people) alongside the 207 

number of points that had been accumulated to that point in the experiment. The 208 

trial sequence is illustrated in Figure 2A. In half of the trials the scene contained 209 

examples of all relevant object categories, while in remaining trials the target was 210 

absent, and the order of target present and target absent trials was randomized 211 

within each block. Participants reported the presence or absence of the target 212 
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with the right index and middle fingers respectively. Late responses (>750 ms) 213 

and missing responses were incorrect. When the target was present and 214 

response was accurate, feedback was determined by the target category (see 215 

Figure 2B). The association of specific categories to reward, loss, and neutral 216 

outcome was counterbalanced across participants, and participants were 217 

explicitly informed at the beginning of the experiment about the relationship 218 

between each target category and its associated outcome. All participants 219 

completed a short training procedure prior to entering the scanner and were able 220 

to report this relationship before beginning the experiment itself. Participants 221 

were paid based on the number of points they accumulated during the 222 

experiment (€0.0018 / point) and each received between €25 and €40.  223 

Experiment 1 - fMRI Data Acquisition, Preprocessing, and Analysis 224 

Whole-brain Imaging was conducted using a Bruker BioSpin MedSpec 4T 225 

scanner with an eight-channel head coil (functional data: T2*-weighted echo-226 

planar images, 31 slices with 0.45 mm gap, 3x3x3 mm voxel size, repetition time 227 

[TR] = 2.2 s., echo time [TE]= 33 ms, flip angle = 76°; structural data: T1-228 

weighted MPRAGE, 256 slices, 1x1x1 mm voxel size). Functional data were 229 

motion corrected, slice time corrected, smoothed using a 6-mm full-width half-230 

max Gaussian kernel, high-pass filtered at 0.008 Hz, coregistered to the 231 

structural image, and spatially normalized to the Montreal Neurological Institute 232 

(MNI) template. Preprocessing and subsequent data analysis was conducted 233 

with SPM12 (University College London, UK) and the CoSMo-MVPA toolbox 234 
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(Oosterhof, Connoly, & Haxby, 2016). 235 

A separate general linear model (GLM) was created for each of the OSC 236 

localizer, category localizer, and visual search task. In each GLM, all regressors 237 

of interest were convolved using the canonical hemodynamic response function 238 

implemented in SPM12 and all models contained six regressors of no interested 239 

obtained from the realignment procedure to account for head motion. 240 

In the OSC localizer, the BOLD signal for each voxel was modeled using two 241 

regressors of interest, one for intact and one for scrambled objects. OSC was 242 

functionally defined in MNI space for each participant by contrasting responses 243 

evoked for the intact and scrambled images and identifying reliably activated 244 

voxels in occipital or temporal cortex (p < 0.001, uncorrected). Mean OSC size 245 

was 1491 voxels +/- 845 SD. In the category localizer, four regressors of interest 246 

were employed, reflecting the presentation of people, cars, houses or trees. In 247 

the visual search task, four regressors of interest were employed, reflecting the 248 

block target. All regressors of interest spanned whole experimental blocks. 249 

Experiment 1 - MVPA  250 

Category patterns were derived from the category localizer data by identifying the 251 

set of t-values elicited for each voxel in OSC by each of the four object 252 

categories. Similar patterns were isolated for each condition of interest in the 253 

visual search experiment. All voxel-wise t-values were normalized within each 254 

experiment by subtracting the mean t-value observed across experimental 255 

conditions from each conditional value (Haxby, Gobbini, Furey, Ishai, Schouten, 256 
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& Pietrini, 2001). This removes voxel variance unrelated to experimental 257 

manipulations while retaining conditional variance. OSC patterns observed in the 258 

visual search experiment were subsequently correlated with OSC patterns 259 

observed in the category localizer to generate a 4x4 correlation matrix. These 260 

values were Fisher-transformed and organized in terms of category outcome 261 

association and whether the category acted as target or distractor. As an internal 262 

check, we determined that OSC patterns elicited by scenes correlated more 263 

strongly with the benchmark pattern corresponding to the target (mean = 0.125) 264 

than they did with the other benchmark patterns (-0.041; p < 0.001).  265 

The correlation values computed in this way are on an interval rather than a ratio 266 

scale, with a zero point that is not informative. This is the case because of the 267 

normalization procedure (Haxby et al., 2001; Misaki et al., 2011). When all 268 

pairwise correlations are calculated for the conditions of two individually 269 

normalized datasets, the resulting set of normalized correlations are centered on 270 

zero. Negative values are thus negative only in relationship to the mean of all 271 

possible cross-correlations between the datasets. Raw, non-normalized 272 

correlation values in Experiment 1 were consistently positive because scene and 273 

localizer stimuli evoked a similar visual response in many OSC voxels. The 274 

normalization procedure isolated conditional differences in this signal. 275 

Each category type acted as distractor in three block types. For example, if a 276 

category was associated with neutral outcome, it could act as distractor when the 277 

target category was also neutral, when the target category was associated with 278 
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reward, and when the target category was associated with evasion of loss. 279 

However, in order to isolate changes in distractor representation that were 280 

produced solely by the association of specific outcome to the distractor category, 281 

we focussed analysis of distractor categories on results observed when the 282 

target was associated with neutral outcome. The general pattern of distractor 283 

information emerges in much the same way if analysis includes conditions where 284 

the target could be associated with reward or evasion of loss.  285 

Experiment 1 - Regression Analysis 286 

To statistically assess the ability of the utility and valence models to account for 287 

our OSC and searchlight results we conducted multiple linear regression 288 

analyses for each participant dataset (and, in the case of searchlight analysis, for 289 

each searchlight sphere). The first regressor described the difference in task 290 

relevance between targets and distractors, positively weighting targets and 291 

negatively weighting distractors (i.e. [1 1 1 -1 -1 -1]). The second described the 292 

valence model, positively weighting reward-associated targets and loss-293 

associated distractors and negatively weighting loss-associated targets and 294 

reward-associated distractors (i.e. [1 0 -1 -1 0 1]). The final regressor described 295 

the utility model, positively weighting both reward- and loss-associated targets 296 

and negatively weighting both reward- and loss-associated distractors (i.e. [1 -2 1 297 

-1 2 -1]). Notice that each regressor vector is orthogonal to the others, has a 298 

mean value of zero, and that distractor weights are an inverted version of target 299 

weights. Regressor vectors were z-scored before linear regression was 300 
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conducted. This analysis garnered a coefficient for each participant that was 301 

positive in value when the regressor predicted dataset variance. The sets of 302 

coefficient values observed across participants were tested against a null 303 

hypothesis of zero.  304 

Experiment 1 - Correlation between univariate activity and information 305 

We approached the experiment with the idea that reactivity in the dopaminergic 306 

midbrain might predict the quality of object representation in OSC (Hickey & 307 

Peelen, 2015, 2017). To test this hypothesis, we began by conducting a separate 308 

event-related GLM analysis with a predictor for the presence of reward-309 

associated, loss-associated, and neutral targets. We subsequently used a 310 

probabilistic anatomical MRI atlas (Maldjian, Laurienti, Kraft, & Burdette, 2003) to 311 

define two midbrain regions of interest (ROIs), one describing the bilateral red 312 

nuclei and the other the bilateral substantia nigrae (Figure 4a). We extracted 313 

activity in each of these ROIs as observed when a reward-associated, loss-314 

associated, and neutral target was present in the scene. Following the logic of 315 

our regression analysis of OSC category information, we conducted a regression 316 

analysis of this univariate activity with predictors for the utility (ie. [+1 -2 +1]) and 317 

valence models (ie. [+1 0 -1]).  318 

This analysis - and the preceding GLM - was limited to activation elicited by the 319 

presence of targets because all distractors were consistently present in each trial 320 

in the design of Experiment 1. To maintain equivalence between univariate and 321 

multivariate results, we calculated new regression coefficients for OSC category 322 
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information with utility and valence predictors modelling the representation of 323 

only targets (and thus ignoring variance in the representation of distractors). The 324 

target-only univariate midbrain coefficients were then correlated with these 325 

target-only category information coefficients (Figure 4B).  326 

We conducted a whole-brain analysis based on the same logic as this ROI-based 327 

analysis (Hickey & Peelen, 2015). For each voxel, coefficients for the valence 328 

model were calculated based on univariate activity observed in that voxel in 329 

response to scenes containing reward-associated, loss-associated, and neutral 330 

targets. The resulting values were correlated across participants with target-only 331 

category information coefficients. These correlation values were Fisher 332 

transformed and assigned to the voxel location in a new brain volume.  333 

Experiment 1 - Whole-brain Searchlight Analysis 334 

Searchlight analysis began with the identification of brain regions where scene-335 

evoked patterns contained more information about targets than distractors. For 336 

each voxel in the brain we defined a surrounding sphere with 21 mm diameter (7 337 

voxels). We subsequently computed voxelwise correlations between scene-338 

evoked activity in each of these spheres and spatially-equivalent mean 339 

benchmark patterns evoked in our category pattern localizer. These correlation 340 

values were Fisher transformed and assigned to the center voxel of each sphere. 341 

Target category information - i.e. the correlation between the scene-evoked 342 

pattern and the benchmark pattern for the object category currently acting as 343 

target in the scene - were subsequently contrasted with non-target category 344 
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information - i.e. the correlation between the scene-evoked pattern and the 345 

benchmark pattern for the object categories currently acting as distractors in the 346 

scene. For each voxel, this difference was tested for statistical reliability across 347 

participants.  348 

Voxels showing selectivity at p < 0.001 were selected for further analysis when 349 

they were part of a cluster with minimum size of 50 voxels. This identified three 350 

clusters. Figure 5A illustrates OSC, as identified in our OSC localizer experiment. 351 

The first and second clusters identified in this searchlight analysis are illustrated 352 

in Figure 5B, and are roughly equivalent in size and location to bilateral OSC. 353 

The third cluster was located in posterior parietal cortex and is illustrated in 354 

Figure 6A.  355 

Further analysis was constrained to the parietal cluster, where we examined 356 

variance in category information in each sphere as a function of outcome-357 

association. To test the degree to which category information for each sphere 358 

followed the utility or valence model we isolated category information for reward-359 

associated, loss-associated, and neutral category examples when these were the 360 

target of search, and for reward-associated, loss-associated, and neutral 361 

category examples when these were distractors and the target of search was an 362 

example of one of the two outcome-neutral object categories. We conducted 363 

multiple linear regression for category information at each voxel using the same 364 

regressor weights described above. All regression coefficient values 365 

corresponding to voxels falling within the parietal ROI were mean averaged to 366 
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generate a single value describing the explanatory power of the task relevance, 367 

utility, and valence models for information in the parietal cluster as a whole. 368 

These values were subsequently tested across participants against a null 369 

hypothesis of zero. 370 

Experiment 2 - Design 371 

As in Experiment 1, the stimulus set for Experiment 2 consisted of a set of black 372 

and white pictures of natural scenes (n=384). However, the set of images 373 

employed in Experiment 2 only partially overlapped with the set of images 374 

employed in Experiment 1. This is the case because, in Experiment 1, scenes 375 

contained examples of either 3 or 4 of the possible target categories. In 376 

Experiment 2, scenes contained examples of either 2 or 3 of the categories. Four 377 

groups of scenes (n=48) each contained all possible combinations of three 378 

categories. Six more groups of scenes contained all possible combinations of two 379 

categories. Of these six groups, we had trouble finding life-like examples of 380 

car/tree and people/house combinations in the absence of the other categories. 381 

As a result, these groups of images contained only 24 examples; all other groups 382 

contained 32 images. Scenes were masked using the same images as employed 383 

in Experiment 1.  384 

Experiment 2 took place in a quiet room and was comprised of 48 blocks of 16 385 

trials. Each block began with a text cue indicating both the target category for the 386 

coming block and the pay scheme. This means that, in contrast to the design of 387 

Experiment 1, the association of outcome to object categories could be 388 
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counterbalanced within participants in Experiment 2. For each participant, two 389 

object categories (cars and trees) were paired with each of the possible 390 

outcomes in an equal number of experimental blocks, with the order of pairing 391 

counterbalanced across participants. Two other target categories (people and 392 

buildings) were consistently associated with neutral feedback. Blocks were 393 

organized in pairs, such that blocks in which participants searched for one of the 394 

two outcome-varying categories (cars or trees) were always followed by blocks 395 

where they searched for one of the two always-neutral categories (people or 396 

buildings). In these neutral-target test blocks, examples of the target category 397 

from the immediately preceding block could appear as task irrelevant distractors.  398 

All blocks contained 8 target present and 8 target absent trials. In target present 399 

trials, in addition to the target the scenes contained an example of 1 of the 3 non-400 

target categories in half of the trials and examples from 2 of the 3 non-target 401 

categories in the remainder. In target absent trials, the scenes contained 402 

examples of 2 of the 3 non-target categories in half of the trials and examples 403 

from all 3 non-target categories in the remainder. This was manipulated such that 404 

examples of each non-target category were present and absent an equal number 405 

of times in both target-present and target-absent conditions, allowing us to 406 

determine how the presence of each distractor type impacted performance in the 407 

neutral test blocks. The trial sequence in Experiment 2 was as illustrated in 408 

Figure 2A but with different latencies. Fixation (833 ms) was followed by 409 

presentation of the scene (40 ms), a mask (260 ms), the reappearance of fixation 410 

(300 ms), and feedback (533 ms).  411 



19 
REWARD PRIORITIZATION IN VISION 
 

 19 

For 54 participants in Experiment 2 the payoff scheme was identical to that 412 

employed in Experiment 1. For 47 participants detection of reward-associated 413 

targets garnered 100 points and failure to detect resulted in 0 points, detection of 414 

neutral targets resulted in 1 point and failure to detect resulted in the loss of 1 415 

point, and detection of loss-associated targets resulted in 0 points and failure to 416 

detect resulted in the loss of 100 points. Payoff for target absent trials remained 417 

as in Experiment 1. Statistical analysis demonstrated no difference in 418 

performance across these groups (for all effects involving this difference, p > 419 

0.211). Participants were paid based on the number of points they accumulated 420 

during the experiment (€0.0011 / point) and each received between €7 and €12.  421 

Experiment 2 - Analysis 422 

Blocks with varying-outcome targets (cars and trees) were analyzed separately 423 

from blocks with consistent-outcome targets (people and buildings), with the 424 

former focusing on variance as a function of target association (i.e. accuracy for 425 

reward- vs. loss-associated targets) and the latter focusing on variance as a 426 

function of distractor association (i.e. accuracy for neutral targets in the presence 427 

of distractors that served as reward- , neutral- or loss-associated targets in the 428 

preceding block).  429 

Behavioural results from Experiment 2 were analyzed using the same regression 430 

approach employed in Experiment 1. Detection accuracy was identified for 431 

conditions where the target was associated with reward, loss, or neutral 432 

outcome, and also for conditions where the target was associated with neutral 433 
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outcome, but the distractor was associated with reward, loss, or neutral outcome. 434 

These six values were regressed to predictors representing the utility and 435 

valence models for each participants, and the resulting beta coefficients were 436 

tested against a null hypothesis of zero.  437 

Statistics 438 

All statistics reported in the paper are a product of permutation analysis with two 439 

exceptions: the GLM models used to generate parametric fMRI maps and the 440 

whole-brain correlation analysis. For permutation tests against the null 441 

hypothesis of zero, data-driven distributions were generated by randomly 442 

sampling from the relevant dataset 106 times with replacement. The likelihood of 443 

observed data given the null was calculated in comparison to these distributions. 444 

Tests of multi-factor results were conducted by randomly relabeling conditional 445 

data over 104 iterations to create a data-driven distribution of F values for each 446 

main effect and interaction. The likelihood of observed F values given the null 447 

was calculated in comparison to these distributions. Tests of correlation were 448 

conducted using a Studentized bootstrap analysis (with 104 iterations in the outer 449 

loop and 100 permutations in the inner loop).  450 

Results 451 

The impact of reward and loss on stimuli representations in OSC and behaviour  452 

Our first aim was to determine if the association of reward or loss impacted the 453 

visual representation of experimental stimuli in a manner predicted by the utility 454 
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or valence models. We began by analyzing fMRI results from Experiment 1, 455 

deriving measures of category information from voxel-wise patterns in object 456 

selective visual cortex (OSC). To do this, we first isolated OSC by comparing 457 

cortical responses to objects versus scrambled versions of these objects. We 458 

then correlated voxel-wise patterns evoked in this area during scene viewing with 459 

benchmark patterns identified in a separate localizer experiment (in which 460 

participants viewed isolated examples of our relevant object categories; Figure 461 

2C). The degree to which the scene-evoked OSC pattern matched each of the 462 

individual category benchmarks provided a measure of the strength with which 463 

each of these categories was represented in ventral visual cortex (Peelen, Fei-464 

Fei, & Kastner, 2009; Seidl, Peelen, & Kastner, 2012).  465 

As illustrated in Figure 3, category information was greater for targets than 466 

distractors, even though targets were only present in half of the trials while all 467 

distractors were present in every trial. The effect is evident in a scale shift in 468 

category information in comparison of Figures 3A and 3B. This strong modulation 469 

by top-down set replicates prior studies using this technique to investigate 470 

naturalistic visual search (Seidl, Peelen, & Kastner, 2012; Peelen, Fei-Fei, & 471 

Kastner, 2009; Hickey & Peelen, 2015). Variance in category information as a 472 

function of outcome-association closely followed the valence model: OSC carried 473 

more information about reward-associated targets than loss-associated targets 474 

(Figure 3A), but this pattern reversed for distractors, with OSC carrying less 475 

information about reward-associated distractors than loss-associated distractors 476 

(Figure 3B).  477 
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Behavioural analysis was focused on target detection accuracy when the target 478 

was present in the scene (ie. hit rate) as an analogue of the target OSC 479 

information effect described above. As illustrated in Figure 3C, hit rate paralleled 480 

the pattern observed in target category information, and thus also closely 481 

followed predictions from the valence model. Importantly, no corresponding effect 482 

was observed in accuracy observed when targets were absent from the scene 483 

(ie. correct rejects; 69%, 72%, and 71% accuracy respectively), suggesting that 484 

outcome association impacted the ability to detect the target rather than 485 

increasing the overall propensity that the target would be reported as present.  486 

To statistically assess the ability of the valence and utility models to predict our 487 

results we conducted linear regression analyses. In analysis of imaging data, 488 

these had 3 factors: the first predicted that category information for task relevant 489 

stimuli would be greater than for distractors (Seidl, Peelen, & Kastner, 2012; 490 

Peelen, Fei-Fei, & Kastner, 2009; Hickey & Peelen, 2015), the second that 491 

results would follow the utility model (as illustrated in Figures 1A and 1B), and the 492 

third that results would follow the valence model (as illustrated in Figures 1C and 493 

1D). This garnered 3 regression coefficients for each participant reflecting the 494 

degree to which the data varied according to each of these hypotheses. The 495 

coefficients corresponding to the task-relevance model were significantly 496 

positive, p < 10-6, as were the coefficients corresponding to the valence model, p 497 

= 0.003, demonstrating that these factors reliably predicted our results. However, 498 

coefficients for the utility model did not differ from zero, p = 0.789. Follow-up 499 

contrasts revealed that OSC carried more information about reward-associated 500 
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targets than loss-associated targets, p = 0.002, but less information about 501 

reward-associated distractors than loss-associated distractors, p = 0.018. In 502 

OSC, the valence model better characterized the pattern of category information 503 

than did the utility model.  504 

Because all distractor types were present in every scene, analysis of behavioural 505 

data from Experiment 1 was limited to the effect of outcome association with 506 

target stimuli. Regression analysis therefore had 2 factors: the first predicted that 507 

hit rate would follow the utility model (as illustrated in Figure 1A) and the second 508 

that it would follow the valence model (as illustrated in Figure 1C). Coefficients 509 

corresponding to the valence model were significantly positive, p = 0.002, but 510 

coefficients for the utility model did not differ from zero, p = 0.360. Follow-up 511 

analysis demonstrated that the effect of target-outcome association on hit rate 512 

reliably differed from its effect on correct rejects (interaction p = 0.017). As was 513 

the case in analysis of OSC category information, the valence model better 514 

characterized detection accuracy than did the utility model.  515 

To gain further perspective on the relationship between brain activity and 516 

behaviour we examined individual differences in how the valence and utility 517 

models fit OSC category information and behaviour. Our expectation was that 518 

those participants showing a strong fit of the valence model in brain activity 519 

should also show a strong fit of the model in behaviour. To test this hypothesis, 520 

we Pearson correlated the valence model coefficients derived from brain data 521 

(Figures 3A and 3B) with the valence model coefficients derived from hit rate 522 
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data (Figure 3C). As illustrated in Figure 3D, a reliable relationship emerged (r = 523 

0.439, p = 0.002). No corresponding relationship was evident when utility model 524 

coefficients for OSC category information and behaviour were correlated (r = 525 

0.075, p = 0.351). Expression of the valence pattern in brain activity therefore 526 

predicted a valence pattern in behaviour, demonstrating a close relationship 527 

between brain activity and behaviour.  528 

Midbrain activity as a predictor of representational quality in OSC 529 

Our study was motivated in part by theories of dopamine’s role in attentional 530 

selection and approach behaviour (Berridge & Robinson, 1998; Ikemoto & 531 

Panksepp, 1999), alongside results relating reward's impact on selection to 532 

activity in the dopaminergic midbrain (Hickey & Peelen, 2015; 2017) and the 533 

release of dopamine in the striatum (Anderson et al., 2016). To test the 534 

relationship between midbrain activity and OSC representations in the current 535 

data we used an MRI atlas to define a ROI describing the bilateral SN (Figure 536 

4A). The dorsal aspect of this SN ROI – encompassing pars compacta and 537 

including voxels projecting into the ventral tegmental area – contains 538 

dopaminergic neurons that project to the striatum and frontal cortex (Williams & 539 

Goldman-Rakic, 1993; Haber, Fudge, & McFarland, 2000). As a functionally 540 

distinct proximal control area, we additionally isolated the bilateral red nuclei, 541 

which are located slightly medial and rostral to the SN but do not contain 542 

dopaminergic cells and have different connectivity than the SN (Figure 4A; 543 

Nioche, Cabanis, & Habas, 2009).  544 
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Our expectation was that participants showing greater responsivity in SN to 545 

reward- vs. loss-associated targets would also show increased category 546 

information for these stimuli in OSC. To test this, we conducted a univariate 547 

regression analysis of voxel activation in the SN and red nuclei ROIs with 548 

predictors representing the utility and valence models. The parameter values 549 

identified in this univariate analysis of SN and red nucleus were subsequently 550 

correlated with valence model coefficients from multivariate analysis of target 551 

information in OSC. As illustrated in Figure 4B, participants showing a valence 552 

pattern in the SN also showed this pattern in OSC category information, r = 553 

0.387, p = 0.030. This relationship was not evident for the red nucleus, r = 0.054, 554 

p = 0.397, and correlation of utility model coefficients for OSC information and 555 

SN activity identified no relationship, r = -0.019, p = 0.538. These findings 556 

demonstrate that when the valence pattern discretely expressed in the SN, it also 557 

expressed in OSC category information. 558 

We conducted an additional whole-brain analysis employing this analytic 559 

approach. Here, coefficient values were extracted for each participant based on 560 

univariate activation of each voxel in brain space and subsequently correlated 561 

with category information coefficients. After FDR correction for multiple 562 

comparisons (Benjamini & Hochberg, 1995), this analysis revealed a set of small 563 

voxel clusters where a good fit of the valence model to univariate activity 564 

predicted a good fit of the valence model to OSC category information. 565 

Supporting the ROI analysis detailed above, a set of voxels was identified in the 566 

midbrain (Figure 4C). These were located bilaterally in the substantia nigra (left: 567 
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2 voxels; peak: -9, -25, -11; right: 1 voxel; 12, -25, -11) and in the vicinity of the 568 

ventral tegmental area (1 voxel; 0, -29, -15). Other clusters emerged in the 569 

posterior cingulate cortex (Figure 4D; 15 voxels; peak: -9, -46, 16), left superior 570 

frontal gyrus (Figure 4E; 10 voxels; peak: -21, -1, 65), and left medial frontal 571 

gyrus / dorsal anterior cingulate (Figure 4F; 3 voxels; peak: -6, 5, 58). The 572 

superior frontal, anterior cingulate, and midbrain clusters are similar to those that 573 

we have identified using similar methodology in earlier investigation of incentive 574 

salience (Hickey & Peelen, 2015).  575 

Beyond OSC: whole-brain analysis of category information 576 

In the imaging analyses described to this point we have measured 577 

representational quality based on consideration of voxel patterns in OSC, which 578 

constitutes a large portion of ventral visual cortex spanning the occipital and 579 

temporal lobes (Figure 5A). However, other brain areas are known to also carry 580 

multivoxel information about naturalistic visual stimuli and their task relevance 581 

(Konen & Kastner, 2008; Jeong & Xu, 2016). To test the ability of the valence 582 

and utility models to describe variance in the quality of object representation 583 

outside OSC we conducted a whole-brain searchlight analysis of the fMRI data 584 

(Kriegeskorte, Goebel, & Bandettini, 2006). 585 

This began with the identification of brain areas that carried more information 586 

about the target of visual search than about task-irrelevant distractors, such that 587 

category information in these areas could be subsequently examined for the 588 

effect of outcome association. We defined spheres around each voxel in the 589 
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brain, testing whether the pattern of voxel-wise activity in each area correlated 590 

with corresponding values from benchmark data generated in our localizer task. 591 

This identified three areas that carried more information about targets than 592 

distractors. Two of these were in the bilateral ventral visual cortex, roughly 593 

equivalent in location and size to OSC as discussed above (see Figure 5). 594 

Consistent with other recent work (Jeong & Xu, 2016; Bettencourt & Xu, 2016) a 595 

third cluster emerged in right posterior parietal cortex, notably containing aspects 596 

of the intra-parietal sulcus and superior parietal lobule (Figure 6A; cf. Peck et al., 597 

2009).  598 

We constrained subsequent analysis to this parietal cluster, extracting category 599 

information for targets and distractors as a function of outcome association. In a 600 

reversal of the pattern we observed in OSC, mean category information here 601 

paralleled the utility rather than valence model: category information was equal 602 

for reward- and loss-associated targets, in both cases larger than for neutral 603 

targets (Figure 6B), but this reversed in analysis of distractor information, with 604 

parietal cortex carrying less information about both reward- and loss-associated 605 

distractors than neutral distractors (Figure 6C).  606 

We once again used linear regression to statistically assess these results. For 607 

each participant and searchlight sphere we modelled category information with 608 

predictors for task relevance, the utility model, and the valence model. We 609 

subsequently generated a set of mean coefficients for each participant that 610 

described the degree to which information in the parietal cluster was 611 
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characterized by our models. The parietal cluster was defined based on its 612 

sensitivity to task relevance, so coefficients corresponding to the task relevance 613 

predictor were unsurprisingly positive, p < 10-6. Utility model coefficients were 614 

also positive, p = 0.002, demonstrating the explanatory power of this model, but 615 

valence model coefficients did not differ from zero, p = 0.511.  616 

Follow-up contrasts revealed that parietal cortex trended toward carrying more 617 

information about a reward-associated target than a neutral target, p = 0.108, 618 

and about a loss-associated target than a neutral target, p = 0.143. Equivalent 619 

analyses of distractor information garnered more reliable effects, with less 620 

information about a reward-associated distractor than a neutral distractor, p = 621 

0.015, and less information about a loss-associated distractor than a neutral 622 

distractor, p = 0.010. 623 

Personality as a predictor of representational quality in OSC.  624 

We have previously found that selective biases to reward-associated stimuli, as 625 

evident in behaviour (Hickey, Chelazzi, & Theeuwes, 2010b) and OSC category 626 

information (Hickey & Peelen, 2015; Hickey & Peelen, 2017), can vary across 627 

individuals as a function of personality traits related to reward-sensitivity. With 628 

this in mind, we approached the current study with the idea that personality traits 629 

related to the valuation of reward and loss might predict the degree to which 630 

representations in OSC followed the utility and valence models, and participants 631 

in Experiment 1 completed a native-language version of the BIS / BAS 632 

personality scale (Carver & White, 1994; Leone, Pierro, & Mannetti, 2002) 633 
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immediately after the scanning session. This scale generates two primary values: 634 

a behavioural inhibition score (BIS), reflecting sensitivity to punishment, and a 635 

behavioural activation score (BAS), reflecting sensitivity to reward. 636 

We correlated BIS and BAS scores across participants with OSC coefficients for 637 

the valence model. This identified a negative correlation between BIS and OSC 638 

valence coefficients (Figure 4G), r = -0.501, p = 0.021, and a non-significant 639 

relationship with BAS, r = -0.122, p = 0.294. It is important to point out, however, 640 

that the significance of the relationship between BIS and OSC valence 641 

coefficients did not sustain when the single participant with a BIS score of 13 was 642 

removed from analysis (r = -0.370, p = 0.056). This finding suggests that the 643 

overall propensity for stronger OSC representation of reward-associated rather 644 

than loss-associated targets (and vice versa for distractors) may be reduced in 645 

participants with high sensitivity to negatively-valenced outcome. But the pattern 646 

should be interpreted with caution given the marginal statistics.  647 

The impact on behaviour of reward and loss associations to distractors  648 

Experiment 1 identified a difference in detection accuracy for reward- and loss-649 

associated targets. However, because all distractor categories were present in 650 

every trial, there was no opportunity to determine how distractors impacted task 651 

performance. We accordingly conducted a second behavioural experiment to 652 

further examine the effect of reward- and loss-associated distractors on search 653 

behaviour. In Experiment 2 each block began with a cue indicating both the 654 

target category and pay scheme for the coming trials. Blocks were organized in 655 
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pairs such that blocks involving reward-associated, loss-associated, or neutral 656 

targets were consistently followed by a block where the target was neutral. In 657 

these test blocks examples of the target category from the immediately preceding 658 

block could appear as task-irrelevant distractors, allowing us to determine how 659 

distractors recently associated to reward or loss impacted search for the neutral 660 

target.  661 

As illustrated in Figures 7A and 7B, response accuracy in Experiment 2 662 

paralleled the pattern of OSC information observed in Experiment 1, thus also 663 

closely following predictions from the valence model. Once again, per-participant 664 

regression analyses were used to assess the predictive power of the models. 665 

Coefficients corresponding to the valence model were positive, p < 10-4, but 666 

coefficients corresponding to the utility model were negative, p = 0.036, reflecting 667 

an inverse relationship between the model and experimental results (and thus a 668 

very bad fit). Follow-up contrasts demonstrated that detection of reward-669 

associated targets was better than of loss-associated targets, p < 10-4, but that 670 

detection of neutral targets was degraded more by a reward-associated distractor 671 

than by a loss-associated distractor, p = 0.045. 672 

More detailed analyses of behaviour are presented in Figure 8. Our prior work 673 

with reward-associated stimuli has demonstrated that non-strategic reward-674 

driven prioritization expresses in accuracy, response latency, or both measures, 675 

depending on task confines (Hickey & Peelen, 2015; Hickey, Chelazzi, & 676 

Theeuwes, 2010a), but is short-lived and can be followed by attentional 677 
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suppression (Hickey & Peelen, 2015; Hickey & van Zoest, 2012). With this in 678 

mind, participants in Experiment 2 were required to respond within 600 ms of 679 

stimulus onset. This created two types of task error: explicit errors, when 680 

participants incorrectly reported the presence or absence of the target, and time-681 

out errors, where they failed to respond in the critical interval. Separating these, 682 

we found that participants made fewer explicit errors when scenes contained a 683 

reward-associated rather than loss-associated target (Figure 8A). This did not 684 

reflect a response bias: if participants were simply more likely in the reward 685 

condition to report the target present, they would have made many errors when 686 

the target was in fact absent. But participants were also nominally more accurate 687 

in reporting the absence of a reward-associated target (Figure 8B). Accordingly, 688 

signal detection analysis shows a greater d' in the reward condition than in the 689 

loss condition (Figure 8C) with no concomitant change in criterion (Figure 8D). 690 

When participants responded within the time-limit, they were slower to do so for a 691 

loss-associated target rather than a reward-associated target (Figure 8E), and 692 

the cost in accuracy created by the presence of a reward-associated distractor 693 

(Figure 7B) was not a product to speed-accuracy tradeoff, as target responses 694 

were not any faster under this circumstance (Figure 8F). Consistent with the RT 695 

slowing, participants were less likely to respond within the time limit in this loss 696 

condition (Figure 8G). This effect on time-out errors was significantly greater 697 

when the target was present than when it was absent (Figure 8H; interaction, p = 698 

0.004), suggesting that this reflects a difficulty in target processing rather than a 699 

more general slowing of response in the loss condition. 700 
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Discussion 701 

Economically rational preferences are defined by their logical consistency: they 702 

remain the same across irrelevant changes to circumstance and context (Arrow, 703 

1982; Tversky & Kahneman, 1989; Glimcher, 2010). Here we ask whether 704 

selective bias for visual stimuli associated with economic benefit meets this 705 

criterion. We designed a naturalistic visual search task in which participants 706 

earned points with cash value by detecting examples of object categories in 707 

images of scenes. Detection of reward-associated targets resulted in a gain of 708 

150 points with misses garnering 50 points, whereas detection of loss-associated 709 

targets resulted in the forfeiture of 50 points but saved participants from the 710 

greater loss of 150 points. Correct detection of both reward- and loss-associated 711 

targets therefore had a benefit of 100 points, but this was couched in the 712 

irrelevant context of absolute gain or loss.  713 

If the ability of reward-associated stimuli to draw attention reflects a normative 714 

visual preference for objects that can be used to maximize utility, this design 715 

should cause reward-associated and loss-associated stimuli to draw attention 716 

equally well. But results from analysis of category information in OSC 717 

(Experiment 1) and task performance (Experiment 2) show no hint of this pattern. 718 

Consistent with prior work, reward-associated stimuli were easy to detect and 719 

well represented in OSC (Hickey & Peelen, 2015). But loss-associated stimuli 720 

were not prioritized in the same way. Selective bias for reward-associated object 721 

categories in natural scenes thus appears to reflect an irrational visual 722 
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preference for objects associated to positive-valence outcome, not a rational 723 

sensitivity for stimuli that maximize utility.  724 

This bias in visual representation parallels known effects in economic decision-725 

making. Tversky and Kahneman (1981) famously showed that the perceived 726 

utility of a choice is sensitive to the context in which the options are presented, 727 

with change in this ‘choice frame’ strongly impacting decision-making and 728 

behaviour. As a result, people are more likely to choose an option presented in a 729 

positive frame than a negative frame, even when the value of outcome does not 730 

change. This has been interpreted as reflecting the use of simplifying heuristics, 731 

like reliance on emotional content, that forego effortful reasoning and valuation of 732 

options (Lowenstein, Weber, Hsee, & Welch, 2001).  733 

By framing the benefit of correct performance in the irrelevant context of absolute 734 

loss, we may therefore have caused participants to devalue this outcome 735 

altogether. However, results from whole-brain searchlight analysis of our fMRI 736 

data argue against this possibility. This identified rational, utility-maximizing 737 

stimuli representations in the intraparietal sulcus and superior gyrus of the 738 

parietal lobe. This is broadly consistent with existing neurophysiological and fMRI 739 

studies suggesting IPS may code the true value of environmental stimuli (eg. 740 

Kahnt et al., 2014; Leathers & Olson, 2012). But in the current results these 741 

utility-driven representations did not influence encoding in OSC and did not drive 742 

task performance. 743 

One possibility is that development of these parietal representations was slower 744 
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than the impact of valence and thus could not influence the representation of 745 

stimuli before the preparation and execution of response. The idea that valence 746 

may have an earlier impact on attentional control than does strategy is consistent 747 

with existing work using time-sensitive measures (Hickey, Chelazzi, & Theeuwes, 748 

2010; Hickey & van Zoest, 2012; Buschschulte, Boehler, Strumpf, Stoppel, 749 

Heinze, Schoenfeld, & Hopf, 2014) and in line with the broad idea that 750 

prioritization of reward-related stimuli may reflect long-term plasticity in visual 751 

cortex triggered by neuromodulatory signals (Roelfsema, van Ooyen, & 752 

Watanabe, 2010; Hickey & Peelen, 2015, 2017). Our results further support the 753 

idea that OSC representations may be influenced by neuromodulatory systems 754 

by showing that these representations vary as a function of signalling in midbrain 755 

nuclei known to contain dopaminergic cells.  756 

At first glance, our results appear at odds with a literature demonstrating 757 

attentional bias toward negatively-valenced stimuli associated to threat or pain 758 

(Tamietto & De Gelder, 2010; Pessoa & Adolphs, 2010). However, this bias is 759 

thought to be unique, perhaps relying on a distinct subcortical route for visual 760 

information (Tamietto & De Gelder, 2010). There are relatively few studies 761 

investigating attentional bias to stimuli associated with economic loss, and these 762 

have garnered mixed results (Schacht, Adler, Chen, Guo, & Sommer, 2012; 763 

Wentura, Müller, & Rothermund, 2014; Wang, Yu, & Zhou, 2013). Studies 764 

employing disgusting images, however, show that these are rapidly suppressed 765 

and subsequently ignored (eg. Zimmer, Keppel, Poglitsch, & Ischebeck, 2015). 766 

The emotion evoked by stimuli associated with small, unavoidable economic loss 767 
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strikes as potentially more similar to disgust than fear, and it is perhaps 768 

reasonable that the visual representation of our loss-associated objects is similar 769 

to that of stimuli associated to disgust. 770 

In conclusion, we show an economically irrational influence of prior experience 771 

on search for naturalistic environmental stimuli and the encoding of these stimuli 772 

in ventral visual cortex. Normative models of economic behaviour propose that 773 

human preferences are consistent and rational, but results from studies of 774 

decision-making and behavioural economics show that this is commonly not the 775 

case (Glimcher, 2010). Here we demonstrate that this economic irrationality in 776 

human cognition begins as early as during perceptual encoding of our 777 

environment. 778 

  779 
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Figure Captions 905 
 906 

Figure 1. Predictions from the utility and valence models. (A) By the utility model, 907 
reward- and loss-associated targets should draw selective resources, and thus be better 908 
represented than neutral targets. (B) During search for neutral targets, reward- and 909 
loss-associated distractors should require the same degree of attentional suppression, 910 
and thus be poorly represented relative to neutral distractors. (C) By the valence model, 911 
reward-associated targets should draw selective resources, while loss-associated 912 
targets s may be actively suppressed and poorly represented in the visual system. (D) 913 
Reward-associated distractors should require attentional suppression, but loss-914 
associated distractors should not. 915 
 916 
Figure 2. (A) Schematic illustration of the trial sequence. Participants reported the 917 
presence of examples of the cued category in briefly presented scenes. Of four possible 918 
target categories, one was associated to reward, one to loss, and two to neutral 919 
outcome. Image and font sizes are not to scale, and the block cue here indicates only 920 
the target category for the coming trials, whereas in the experiment itself the total 921 
number of points earned to that point in the experiment was also presented.  (B) 922 
Feedback schedule. The association of category to outcome in the actual experiment 923 
was counterbalanced across participants. Note that feedback indicated here was for 924 
target-present trials. Correct performance in target-absent trials garnered a single point 925 
in neutral blocks and 0 points in reward and loss blocks. Incorrect performance in 926 
target-absent trials resulted in the loss of a single point in neutral blocks and the loss of 927 
50 points in reward and loss blocks. (C) Analytic approach. Scene-evoked activity 928 
patterns in OSC were correlated with benchmark patterns. High correlation indicates 929 
increased information for that category in visual cortex during scene perception. 930 
 931 
Figure 3. Results from Experiment 1. (A) In line with the valence model, reward-932 
associated targets are better represented in OSC than loss-associated targets. (B) 933 
During search for neutral targets, OSC carried less information about reward-associated 934 
distractors than loss-associated distractors, indicative of attentional suppression. Note 935 
that our normalization procedure causes these values to be represented on an interval 936 
scale with an uninformative zero point. As such, negative values do not imply the 937 
presence of information in the form of negative correlation (see Materials and Methods 938 
for details).  (C) Accuracy in detecting the target when it was present in the scene. (D) 939 
The relationship between coefficients from a fit of the valence model to OSC category 940 
information, as illustrated in panels A and B, and coefficients from a fit of the valence 941 
model to hit rate data, as illustrated in panel C. Error bars reflect within-participant 942 
standard error (Cousineau, 2005). 943 
 944 
Figure 4. (A) Anatomically defined ROIs characterizing the SN and RN. (B) Relationship 945 
between inter-individual variance in the valence coefficient of the SN ROI and the 946 
valence coefficient of category information in OSC. (C) Midbrain voxels identified in 947 
whole-brain correlational analysis. Note that the single 3mm voxel on the midline 948 
actually begins one slice inferior to the illustrated horizontal section (beginning at z = -949 
14). (D-F) Other clusters identified in whole-brain correlational analysis, see text for 950 
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details. (G) Relationship between inter-individual variance in BIS and the valence 951 
coefficient of category information in OSC.  952 
 953 
Figure 5. A) OSC as defined in the OSC localizer. Voxels identified here were present in 954 
the OSC of 16 or more of the 23 participants in Experiment 1. (B) Results from the 955 
searchlight contrast of information for targets vs. distractors. Voxels identified here 956 
constitute the center of spheres that carried more information for targets than distractors 957 
at p < 0.001 with a cluster threshold of 50 voxels. 958 
 959 
Figure 6. (A) Parietal cluster identified in searchlight analysis. This brain region was 960 
defined by contrasting information content for targets vs. distractors. Centroid: +9, -73, 961 
+43, MNI space. (B) Results from analysis of outcome association in the parietal cluster. 962 
Error bars reflect within-participant standard error (Cousineau, 2005). 963 
 964 
Figure 7. Results from Experiment 2. (A) In line with the valence model, accuracy is 965 
better for reward-associated targets than loss-associated targets. (D) Search for a 966 
neutral target is more strongly disrupted by a reward- vs. loss-associated distractor.  967 
 968 
Figure 8. Further analysis of results from Experiment 2. (A) Explicit accuracy in target-969 
present trials as observed when a response was made within the time limit. (B) Explicit 970 
accuracy in target-absent trials. (C) Perceptual sensitivity for targets. (D) Response 971 
criterion. Participants tended to report the target as present, resulting in a negative 972 
criterion, but this did not differ across reward and loss conditions. (E) Reaction times for 973 
target-present and target-absent trials as a function of target association. (F) Reaction 974 
times for target-present and target-absent trials where the target had neutral 975 
association, as a function of whether a reward-, loss-, or neutral-associated distractor 976 
was present in the scene. (G) Number of time-out trials when target was present, as 977 
proportion of total per condition. (H) Number of time-out trials when target was absent. 978 
Error bars reflect within-participant standard error (Cousineau, 2005). 979 
 980 
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